See axolotl config
axolotl version: 0.5.0
base_model: HuggingFaceTB/SmolLM2-360M
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: ./dataforge
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
- path: HuggingFaceTB/smol-smoltalk
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/smollm360m
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name: smollm2
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1.0e-03
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 5
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|im_end|>"
eos_token: "<|im_end|>"
SmolLM2 360M Instruct ITA
This model is a fine-tuned version of HuggingFaceTB/SmolLM2-360M on the smol-smoltalk dataset and on the ReDiX/DataForge. Our datasets is a mixture of open source italian datasets and ReDiX/everyday-conversations-ita It achieves the following results on the evaluation set:
- Loss: 0.8925
Model description
This model is an experiment to test out the ReDiX/everyday-conversations-ita dataset.
Intended uses & limitations
Simple and very basic chat in italian and english
Training and evaluation data
Model | m_mmlu_it | arc_it | hellaswag_it |
---|---|---|---|
Qwen2.5-0.5-Instruct | 37.05 | 27.54 | 35.73 |
ReDiX/SmolLM2-360M-Instruct-ita | 24.94 | 28.40 | 35.96 |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 1.3366 |
1.0595 | 0.2501 | 774 | 1.0840 |
1.0194 | 0.5002 | 1548 | 1.0139 |
1.0075 | 0.7504 | 2322 | 0.9701 |
1.0286 | 1.0005 | 3096 | 0.9269 |
0.7871 | 1.2506 | 3870 | 0.9111 |
0.7481 | 1.5007 | 4644 | 0.8960 |
0.7429 | 1.7508 | 5418 | 0.8925 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 116
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.