beto-finetuned-ner-1
Este es modelo resultado de un finetuning de NazaGara/NER-fine-tuned-BETO sobre el conll2002 dataset. Los siguientes son los resultados sobre el conjunto de evaluación:
- Loss: 0.002421
- Precision: 0.861199
- Recall: 0.871094
- F1: 0.8851
- Accuracy: 0,972756
Model description
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- weight_decay: 0.001
- num_epochs: 8
Training results
Epoch | Training Loss | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|
1 | 0.004500 | 0.271499 | 0.854365 | 0.868107 | 0.861181 | 0.971268 |
2 | 0.004000 | 0.283811 | 0.839605 | 0.840763 | 0.840184 | 0.966170 |
3 | 0.003900 | 0.261076 | 0.849651 | 0.867417 | 0.858442 | 0.970664 |
4 | 0.002600 | 0.277270 | 0.858379 | 0.866268 | 0.862306 | 0.971702 |
5 | 0.002000 | 0.270548 | 0.859149 | 0.871783 | 0.865420 | 0.971563 |
6 | 0.001800 | 0.279797 | 0.857305 | 0.868336 | 0.862785 | 0.971609 |
7 | 0.001800 | 0.281091 | 0.857467 | 0.868107 | 0.862754 | 0.971966 |
8 | 0.001100 | 0.284128 | 0.861199 | 0.871094 | 0.866118 | 0.972756 |
- Downloads last month
- 256
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for PLN-T4-J-D-W/beto-finetuned-ner-1
Base model
NazaGara/NER-fine-tuned-BETODataset used to train PLN-T4-J-D-W/beto-finetuned-ner-1
Evaluation results
- Precision on conll2002validation set self-reported0.861
- Recall on conll2002validation set self-reported0.871
- F1 on conll2002validation set self-reported0.866
- Accuracy on conll2002validation set self-reported0.973