beto-finetuned-ner-1

Este es modelo resultado de un finetuning de NazaGara/NER-fine-tuned-BETO sobre el conll2002 dataset. Los siguientes son los resultados sobre el conjunto de evaluación:

  • Loss: 0.002421
  • Precision: 0.861199
  • Recall: 0.871094
  • F1: 0.8851
  • Accuracy: 0,972756

Model description

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • weight_decay: 0.001
  • num_epochs: 8

Training results

Epoch Training Loss Validation Loss Precision Recall F1 Accuracy
1 0.004500 0.271499 0.854365 0.868107 0.861181 0.971268
2 0.004000 0.283811 0.839605 0.840763 0.840184 0.966170
3 0.003900 0.261076 0.849651 0.867417 0.858442 0.970664
4 0.002600 0.277270 0.858379 0.866268 0.862306 0.971702
5 0.002000 0.270548 0.859149 0.871783 0.865420 0.971563
6 0.001800 0.279797 0.857305 0.868336 0.862785 0.971609
7 0.001800 0.281091 0.857467 0.868107 0.862754 0.971966
8 0.001100 0.284128 0.861199 0.871094 0.866118 0.972756
Downloads last month
256
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PLN-T4-J-D-W/beto-finetuned-ner-1

Finetuned
(14)
this model

Dataset used to train PLN-T4-J-D-W/beto-finetuned-ner-1

Evaluation results