Narsil's picture
Narsil HF staff
Update README.md
3498c49
metadata
tags:
  - generated_from_trainer
datasets:
  - nielsr/funsd-layoutlmv3
pipeline_tag: object-detection
widget:
  - src: >-
      https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png
    example_title: invoice
  - src: >-
      https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/contract.jpeg
    example_title: contract
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-funsd
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: nielsr/funsd-layoutlmv3
          type: nielsr/funsd-layoutlmv3
          args: funsd
        metrics:
          - name: Precision
            type: precision
            value: 0.9026198714780029
          - name: Recall
            type: recall
            value: 0.913
          - name: F1
            type: f1
            value: 0.9077802634849614
          - name: Accuracy
            type: accuracy
            value: 0.8330271015158475
duplicated_from: nielsr/layoutlmv3-finetuned-funsd

layoutlmv3-finetuned-funsd

This model is a fine-tuned version of microsoft/layoutlmv3-base on the nielsr/funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1164
  • Precision: 0.9026
  • Recall: 0.913
  • F1: 0.9078
  • Accuracy: 0.8330

The script for training can be found here: https://github.com/huggingface/transformers/tree/main/examples/research_projects/layoutlmv3

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 10.0 100 0.5238 0.8366 0.886 0.8606 0.8410
No log 20.0 200 0.6930 0.8751 0.8965 0.8857 0.8322
No log 30.0 300 0.7784 0.8902 0.908 0.8990 0.8414
No log 40.0 400 0.9056 0.8916 0.905 0.8983 0.8364
0.2429 50.0 500 1.0016 0.8954 0.9075 0.9014 0.8298
0.2429 60.0 600 1.0097 0.8899 0.897 0.8934 0.8294
0.2429 70.0 700 1.0722 0.9035 0.9085 0.9060 0.8315
0.2429 80.0 800 1.0884 0.8905 0.9105 0.9004 0.8269
0.2429 90.0 900 1.1292 0.8938 0.909 0.9013 0.8279
0.0098 100.0 1000 1.1164 0.9026 0.913 0.9078 0.8330

Framework versions

  • Transformers 4.19.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.0.0
  • Tokenizers 0.11.6