This is a BF16 and pruned version of migtissera/Tess-70B-v1.6 .
migtissera/Tess-70B-v1.6 has 69 billion params and Covasna-0.1 has 41.6 billion (~60.3% param size)
Steps to replicate:
Use laserQlora.ipynb from cognitivecomputations/laserRMT to determine which layers should be eliminated.
Adapt the script for migtissera/Tess-70B-v1.6
by replacing model_name = "mistralai/Mistral-7B-v0.1"
with model_name = "migtissera/Tess-70B-v1.6"
and layer_numbers = list(range(31, -1, -1))
with layer_numbers = list(range(79, -1, -1))
, 79 being the last recurrent layer index Tess-70B-v1.6 has.
Then look for the layer indexes where self_attn.v_proj snr is Infinity and eliminate those layers using mergekit.
Here is the mergekit config:
slices:
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [0, 7]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [8, 9]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [12, 29]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [31, 32]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [33, 45]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [50, 52]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [60, 61]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [67, 68]
- sources:
- model: "migtissera/Tess-70B-v1.6"
layer_range: [74, 80]
merge_method: passthrough
dtype: bfloat16
GGUF: Covasna-0.1-GGUF
- Downloads last month
- 8