ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k2_task2_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5838
- Qwk: 0.5225
- Mse: 0.5838
- Rmse: 0.7641
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.1538 | 2 | 4.2011 | -0.0238 | 4.2011 | 2.0496 |
No log | 0.3077 | 4 | 2.4547 | 0.0591 | 2.4547 | 1.5667 |
No log | 0.4615 | 6 | 1.1862 | 0.0308 | 1.1862 | 1.0891 |
No log | 0.6154 | 8 | 0.8218 | 0.2140 | 0.8218 | 0.9065 |
No log | 0.7692 | 10 | 0.8401 | 0.1148 | 0.8401 | 0.9166 |
No log | 0.9231 | 12 | 0.8353 | 0.2308 | 0.8353 | 0.9139 |
No log | 1.0769 | 14 | 0.8628 | 0.2704 | 0.8628 | 0.9289 |
No log | 1.2308 | 16 | 0.8657 | 0.1867 | 0.8657 | 0.9304 |
No log | 1.3846 | 18 | 0.8456 | 0.1825 | 0.8456 | 0.9196 |
No log | 1.5385 | 20 | 0.9339 | 0.1483 | 0.9339 | 0.9664 |
No log | 1.6923 | 22 | 0.9692 | 0.0292 | 0.9692 | 0.9845 |
No log | 1.8462 | 24 | 0.8371 | 0.2714 | 0.8371 | 0.9149 |
No log | 2.0 | 26 | 0.7177 | 0.3315 | 0.7177 | 0.8472 |
No log | 2.1538 | 28 | 0.6729 | 0.3097 | 0.6729 | 0.8203 |
No log | 2.3077 | 30 | 0.6493 | 0.4060 | 0.6493 | 0.8058 |
No log | 2.4615 | 32 | 0.8683 | 0.3182 | 0.8683 | 0.9318 |
No log | 2.6154 | 34 | 0.9626 | 0.2658 | 0.9626 | 0.9811 |
No log | 2.7692 | 36 | 0.6797 | 0.3894 | 0.6797 | 0.8245 |
No log | 2.9231 | 38 | 0.6677 | 0.4055 | 0.6677 | 0.8171 |
No log | 3.0769 | 40 | 0.6702 | 0.3850 | 0.6702 | 0.8186 |
No log | 3.2308 | 42 | 0.6340 | 0.4524 | 0.6340 | 0.7963 |
No log | 3.3846 | 44 | 0.6319 | 0.4402 | 0.6319 | 0.7950 |
No log | 3.5385 | 46 | 0.6671 | 0.4167 | 0.6671 | 0.8168 |
No log | 3.6923 | 48 | 0.7430 | 0.3495 | 0.7430 | 0.8620 |
No log | 3.8462 | 50 | 0.6583 | 0.3865 | 0.6583 | 0.8114 |
No log | 4.0 | 52 | 0.6462 | 0.4582 | 0.6462 | 0.8039 |
No log | 4.1538 | 54 | 0.7109 | 0.4257 | 0.7109 | 0.8432 |
No log | 4.3077 | 56 | 0.6730 | 0.4255 | 0.6730 | 0.8204 |
No log | 4.4615 | 58 | 0.6814 | 0.4564 | 0.6814 | 0.8255 |
No log | 4.6154 | 60 | 0.8207 | 0.4517 | 0.8207 | 0.9059 |
No log | 4.7692 | 62 | 0.8552 | 0.4997 | 0.8552 | 0.9248 |
No log | 4.9231 | 64 | 0.6996 | 0.4873 | 0.6996 | 0.8364 |
No log | 5.0769 | 66 | 0.7499 | 0.4694 | 0.7499 | 0.8660 |
No log | 5.2308 | 68 | 0.7033 | 0.5151 | 0.7033 | 0.8386 |
No log | 5.3846 | 70 | 0.8177 | 0.5146 | 0.8177 | 0.9043 |
No log | 5.5385 | 72 | 0.9540 | 0.5113 | 0.9540 | 0.9767 |
No log | 5.6923 | 74 | 0.8173 | 0.5392 | 0.8173 | 0.9040 |
No log | 5.8462 | 76 | 0.6936 | 0.4449 | 0.6936 | 0.8328 |
No log | 6.0 | 78 | 0.8096 | 0.4148 | 0.8096 | 0.8998 |
No log | 6.1538 | 80 | 0.8428 | 0.3297 | 0.8428 | 0.9180 |
No log | 6.3077 | 82 | 0.6811 | 0.4564 | 0.6811 | 0.8253 |
No log | 6.4615 | 84 | 0.7759 | 0.5071 | 0.7759 | 0.8809 |
No log | 6.6154 | 86 | 0.8185 | 0.5185 | 0.8185 | 0.9047 |
No log | 6.7692 | 88 | 0.6964 | 0.4582 | 0.6964 | 0.8345 |
No log | 6.9231 | 90 | 0.6949 | 0.4909 | 0.6949 | 0.8336 |
No log | 7.0769 | 92 | 0.7772 | 0.4722 | 0.7772 | 0.8816 |
No log | 7.2308 | 94 | 0.6956 | 0.5 | 0.6956 | 0.8340 |
No log | 7.3846 | 96 | 0.7008 | 0.4511 | 0.7008 | 0.8371 |
No log | 7.5385 | 98 | 0.7886 | 0.4815 | 0.7886 | 0.8880 |
No log | 7.6923 | 100 | 0.6572 | 0.4874 | 0.6572 | 0.8107 |
No log | 7.8462 | 102 | 0.6193 | 0.5391 | 0.6193 | 0.7869 |
No log | 8.0 | 104 | 0.6245 | 0.5736 | 0.6245 | 0.7903 |
No log | 8.1538 | 106 | 0.6757 | 0.5053 | 0.6757 | 0.8220 |
No log | 8.3077 | 108 | 0.6649 | 0.5489 | 0.6649 | 0.8154 |
No log | 8.4615 | 110 | 0.6366 | 0.5421 | 0.6366 | 0.7979 |
No log | 8.6154 | 112 | 0.6404 | 0.5898 | 0.6404 | 0.8002 |
No log | 8.7692 | 114 | 0.6400 | 0.6032 | 0.6400 | 0.8000 |
No log | 8.9231 | 116 | 0.6953 | 0.5804 | 0.6953 | 0.8338 |
No log | 9.0769 | 118 | 0.7802 | 0.5065 | 0.7802 | 0.8833 |
No log | 9.2308 | 120 | 0.7957 | 0.4766 | 0.7957 | 0.8920 |
No log | 9.3846 | 122 | 0.6624 | 0.5388 | 0.6624 | 0.8139 |
No log | 9.5385 | 124 | 0.6441 | 0.5283 | 0.6441 | 0.8026 |
No log | 9.6923 | 126 | 0.6309 | 0.5381 | 0.6309 | 0.7943 |
No log | 9.8462 | 128 | 0.6191 | 0.5579 | 0.6191 | 0.7868 |
No log | 10.0 | 130 | 0.6250 | 0.5679 | 0.6250 | 0.7905 |
No log | 10.1538 | 132 | 0.6438 | 0.5656 | 0.6438 | 0.8024 |
No log | 10.3077 | 134 | 0.5836 | 0.5497 | 0.5836 | 0.7640 |
No log | 10.4615 | 136 | 0.5920 | 0.4727 | 0.5920 | 0.7694 |
No log | 10.6154 | 138 | 0.6162 | 0.5379 | 0.6162 | 0.7850 |
No log | 10.7692 | 140 | 0.6557 | 0.5533 | 0.6557 | 0.8098 |
No log | 10.9231 | 142 | 0.7019 | 0.5616 | 0.7019 | 0.8378 |
No log | 11.0769 | 144 | 0.7227 | 0.5923 | 0.7227 | 0.8501 |
No log | 11.2308 | 146 | 0.7906 | 0.4678 | 0.7906 | 0.8892 |
No log | 11.3846 | 148 | 0.9230 | 0.4229 | 0.9230 | 0.9607 |
No log | 11.5385 | 150 | 0.7499 | 0.4769 | 0.7499 | 0.8659 |
No log | 11.6923 | 152 | 0.6821 | 0.5087 | 0.6821 | 0.8259 |
No log | 11.8462 | 154 | 1.0058 | 0.4750 | 1.0058 | 1.0029 |
No log | 12.0 | 156 | 1.0695 | 0.4245 | 1.0695 | 1.0342 |
No log | 12.1538 | 158 | 0.7786 | 0.5127 | 0.7786 | 0.8824 |
No log | 12.3077 | 160 | 0.7239 | 0.5400 | 0.7239 | 0.8508 |
No log | 12.4615 | 162 | 0.9247 | 0.3876 | 0.9247 | 0.9616 |
No log | 12.6154 | 164 | 0.8738 | 0.4030 | 0.8738 | 0.9348 |
No log | 12.7692 | 166 | 0.6813 | 0.5576 | 0.6813 | 0.8254 |
No log | 12.9231 | 168 | 0.7773 | 0.4980 | 0.7773 | 0.8817 |
No log | 13.0769 | 170 | 0.7979 | 0.5113 | 0.7979 | 0.8933 |
No log | 13.2308 | 172 | 0.6635 | 0.5484 | 0.6635 | 0.8145 |
No log | 13.3846 | 174 | 0.6821 | 0.5526 | 0.6821 | 0.8259 |
No log | 13.5385 | 176 | 0.6869 | 0.5471 | 0.6869 | 0.8288 |
No log | 13.6923 | 178 | 0.6675 | 0.5661 | 0.6675 | 0.8170 |
No log | 13.8462 | 180 | 0.6301 | 0.5325 | 0.6301 | 0.7938 |
No log | 14.0 | 182 | 0.6494 | 0.5095 | 0.6494 | 0.8058 |
No log | 14.1538 | 184 | 0.6749 | 0.4991 | 0.6749 | 0.8215 |
No log | 14.3077 | 186 | 0.6165 | 0.5511 | 0.6165 | 0.7852 |
No log | 14.4615 | 188 | 0.6005 | 0.5410 | 0.6005 | 0.7749 |
No log | 14.6154 | 190 | 0.5966 | 0.5517 | 0.5966 | 0.7724 |
No log | 14.7692 | 192 | 0.5999 | 0.5824 | 0.5999 | 0.7745 |
No log | 14.9231 | 194 | 0.5914 | 0.5737 | 0.5914 | 0.7690 |
No log | 15.0769 | 196 | 0.6028 | 0.5898 | 0.6028 | 0.7764 |
No log | 15.2308 | 198 | 0.7880 | 0.4474 | 0.7880 | 0.8877 |
No log | 15.3846 | 200 | 0.7983 | 0.4355 | 0.7983 | 0.8935 |
No log | 15.5385 | 202 | 0.6604 | 0.4861 | 0.6604 | 0.8126 |
No log | 15.6923 | 204 | 0.6074 | 0.5247 | 0.6074 | 0.7794 |
No log | 15.8462 | 206 | 0.6081 | 0.5238 | 0.6081 | 0.7798 |
No log | 16.0 | 208 | 0.6682 | 0.5186 | 0.6682 | 0.8175 |
No log | 16.1538 | 210 | 0.7631 | 0.4713 | 0.7631 | 0.8736 |
No log | 16.3077 | 212 | 0.7667 | 0.4713 | 0.7667 | 0.8756 |
No log | 16.4615 | 214 | 0.6498 | 0.5530 | 0.6498 | 0.8061 |
No log | 16.6154 | 216 | 0.6674 | 0.5545 | 0.6674 | 0.8170 |
No log | 16.7692 | 218 | 0.7081 | 0.5117 | 0.7081 | 0.8415 |
No log | 16.9231 | 220 | 0.6385 | 0.5561 | 0.6385 | 0.7991 |
No log | 17.0769 | 222 | 0.6325 | 0.5237 | 0.6325 | 0.7953 |
No log | 17.2308 | 224 | 0.7020 | 0.5195 | 0.7020 | 0.8378 |
No log | 17.3846 | 226 | 0.6773 | 0.5186 | 0.6773 | 0.8230 |
No log | 17.5385 | 228 | 0.6397 | 0.5041 | 0.6397 | 0.7998 |
No log | 17.6923 | 230 | 0.6552 | 0.4819 | 0.6552 | 0.8094 |
No log | 17.8462 | 232 | 0.6721 | 0.5303 | 0.6721 | 0.8198 |
No log | 18.0 | 234 | 0.7531 | 0.4642 | 0.7531 | 0.8678 |
No log | 18.1538 | 236 | 0.7079 | 0.5546 | 0.7079 | 0.8413 |
No log | 18.3077 | 238 | 0.6466 | 0.5148 | 0.6466 | 0.8041 |
No log | 18.4615 | 240 | 0.7012 | 0.5504 | 0.7012 | 0.8374 |
No log | 18.6154 | 242 | 0.6836 | 0.5003 | 0.6836 | 0.8268 |
No log | 18.7692 | 244 | 0.6277 | 0.4767 | 0.6277 | 0.7923 |
No log | 18.9231 | 246 | 0.6792 | 0.5106 | 0.6792 | 0.8241 |
No log | 19.0769 | 248 | 0.6855 | 0.5220 | 0.6855 | 0.8279 |
No log | 19.2308 | 250 | 0.6415 | 0.4665 | 0.6415 | 0.8010 |
No log | 19.3846 | 252 | 0.6483 | 0.4443 | 0.6483 | 0.8052 |
No log | 19.5385 | 254 | 0.6857 | 0.5088 | 0.6857 | 0.8281 |
No log | 19.6923 | 256 | 0.8033 | 0.4337 | 0.8033 | 0.8963 |
No log | 19.8462 | 258 | 0.9618 | 0.3920 | 0.9618 | 0.9807 |
No log | 20.0 | 260 | 0.8487 | 0.4138 | 0.8487 | 0.9212 |
No log | 20.1538 | 262 | 0.6451 | 0.5597 | 0.6451 | 0.8032 |
No log | 20.3077 | 264 | 0.6506 | 0.4624 | 0.6506 | 0.8066 |
No log | 20.4615 | 266 | 0.7441 | 0.4081 | 0.7441 | 0.8626 |
No log | 20.6154 | 268 | 0.6984 | 0.3991 | 0.6984 | 0.8357 |
No log | 20.7692 | 270 | 0.6034 | 0.4542 | 0.6034 | 0.7768 |
No log | 20.9231 | 272 | 0.6191 | 0.4747 | 0.6191 | 0.7868 |
No log | 21.0769 | 274 | 0.7485 | 0.4791 | 0.7485 | 0.8652 |
No log | 21.2308 | 276 | 0.8221 | 0.3891 | 0.8221 | 0.9067 |
No log | 21.3846 | 278 | 0.8098 | 0.4637 | 0.8098 | 0.8999 |
No log | 21.5385 | 280 | 0.6898 | 0.4929 | 0.6898 | 0.8305 |
No log | 21.6923 | 282 | 0.5809 | 0.5352 | 0.5809 | 0.7622 |
No log | 21.8462 | 284 | 0.6243 | 0.4651 | 0.6243 | 0.7902 |
No log | 22.0 | 286 | 0.6475 | 0.4553 | 0.6475 | 0.8047 |
No log | 22.1538 | 288 | 0.5853 | 0.4656 | 0.5853 | 0.7651 |
No log | 22.3077 | 290 | 0.5804 | 0.5666 | 0.5804 | 0.7618 |
No log | 22.4615 | 292 | 0.6567 | 0.5411 | 0.6567 | 0.8104 |
No log | 22.6154 | 294 | 0.7192 | 0.4988 | 0.7192 | 0.8481 |
No log | 22.7692 | 296 | 0.6573 | 0.5098 | 0.6573 | 0.8108 |
No log | 22.9231 | 298 | 0.5554 | 0.5482 | 0.5554 | 0.7453 |
No log | 23.0769 | 300 | 0.5463 | 0.4888 | 0.5463 | 0.7391 |
No log | 23.2308 | 302 | 0.5414 | 0.5012 | 0.5414 | 0.7358 |
No log | 23.3846 | 304 | 0.5415 | 0.5156 | 0.5415 | 0.7359 |
No log | 23.5385 | 306 | 0.5442 | 0.4903 | 0.5442 | 0.7377 |
No log | 23.6923 | 308 | 0.5507 | 0.5109 | 0.5507 | 0.7421 |
No log | 23.8462 | 310 | 0.5558 | 0.5389 | 0.5558 | 0.7455 |
No log | 24.0 | 312 | 0.5776 | 0.5007 | 0.5776 | 0.7600 |
No log | 24.1538 | 314 | 0.5566 | 0.5416 | 0.5566 | 0.7461 |
No log | 24.3077 | 316 | 0.5469 | 0.5254 | 0.5469 | 0.7396 |
No log | 24.4615 | 318 | 0.5497 | 0.5263 | 0.5497 | 0.7414 |
No log | 24.6154 | 320 | 0.5528 | 0.5652 | 0.5528 | 0.7435 |
No log | 24.7692 | 322 | 0.5762 | 0.5333 | 0.5762 | 0.7591 |
No log | 24.9231 | 324 | 0.6782 | 0.4823 | 0.6782 | 0.8235 |
No log | 25.0769 | 326 | 0.8622 | 0.4188 | 0.8622 | 0.9286 |
No log | 25.2308 | 328 | 0.8773 | 0.4188 | 0.8773 | 0.9366 |
No log | 25.3846 | 330 | 0.7583 | 0.4802 | 0.7583 | 0.8708 |
No log | 25.5385 | 332 | 0.6354 | 0.5026 | 0.6354 | 0.7971 |
No log | 25.6923 | 334 | 0.6112 | 0.5551 | 0.6112 | 0.7818 |
No log | 25.8462 | 336 | 0.6095 | 0.5073 | 0.6095 | 0.7807 |
No log | 26.0 | 338 | 0.6179 | 0.5104 | 0.6179 | 0.7861 |
No log | 26.1538 | 340 | 0.6409 | 0.5159 | 0.6409 | 0.8006 |
No log | 26.3077 | 342 | 0.6599 | 0.4809 | 0.6599 | 0.8123 |
No log | 26.4615 | 344 | 0.6619 | 0.5065 | 0.6619 | 0.8136 |
No log | 26.6154 | 346 | 0.6377 | 0.5440 | 0.6377 | 0.7985 |
No log | 26.7692 | 348 | 0.5919 | 0.5011 | 0.5919 | 0.7693 |
No log | 26.9231 | 350 | 0.5911 | 0.5056 | 0.5911 | 0.7688 |
No log | 27.0769 | 352 | 0.6407 | 0.4778 | 0.6407 | 0.8004 |
No log | 27.2308 | 354 | 0.6441 | 0.4915 | 0.6441 | 0.8026 |
No log | 27.3846 | 356 | 0.5806 | 0.4945 | 0.5806 | 0.7620 |
No log | 27.5385 | 358 | 0.5737 | 0.4830 | 0.5737 | 0.7574 |
No log | 27.6923 | 360 | 0.6223 | 0.5294 | 0.6223 | 0.7888 |
No log | 27.8462 | 362 | 0.6429 | 0.4568 | 0.6429 | 0.8018 |
No log | 28.0 | 364 | 0.5997 | 0.4500 | 0.5997 | 0.7744 |
No log | 28.1538 | 366 | 0.5682 | 0.5063 | 0.5682 | 0.7538 |
No log | 28.3077 | 368 | 0.5635 | 0.5192 | 0.5635 | 0.7507 |
No log | 28.4615 | 370 | 0.5681 | 0.5305 | 0.5681 | 0.7537 |
No log | 28.6154 | 372 | 0.5652 | 0.5599 | 0.5652 | 0.7518 |
No log | 28.7692 | 374 | 0.5741 | 0.6002 | 0.5741 | 0.7577 |
No log | 28.9231 | 376 | 0.5808 | 0.6097 | 0.5808 | 0.7621 |
No log | 29.0769 | 378 | 0.5622 | 0.5266 | 0.5622 | 0.7498 |
No log | 29.2308 | 380 | 0.5731 | 0.4511 | 0.5731 | 0.7570 |
No log | 29.3846 | 382 | 0.5725 | 0.5010 | 0.5725 | 0.7566 |
No log | 29.5385 | 384 | 0.5785 | 0.5023 | 0.5785 | 0.7606 |
No log | 29.6923 | 386 | 0.5843 | 0.5421 | 0.5843 | 0.7644 |
No log | 29.8462 | 388 | 0.5930 | 0.5486 | 0.5930 | 0.7701 |
No log | 30.0 | 390 | 0.5947 | 0.5666 | 0.5947 | 0.7712 |
No log | 30.1538 | 392 | 0.5920 | 0.5666 | 0.5920 | 0.7694 |
No log | 30.3077 | 394 | 0.5849 | 0.5864 | 0.5849 | 0.7648 |
No log | 30.4615 | 396 | 0.5669 | 0.5383 | 0.5669 | 0.7529 |
No log | 30.6154 | 398 | 0.5567 | 0.5498 | 0.5567 | 0.7462 |
No log | 30.7692 | 400 | 0.5527 | 0.5396 | 0.5527 | 0.7434 |
No log | 30.9231 | 402 | 0.5491 | 0.5459 | 0.5491 | 0.7410 |
No log | 31.0769 | 404 | 0.5462 | 0.5448 | 0.5462 | 0.7391 |
No log | 31.2308 | 406 | 0.5513 | 0.4997 | 0.5513 | 0.7425 |
No log | 31.3846 | 408 | 0.5741 | 0.4153 | 0.5741 | 0.7577 |
No log | 31.5385 | 410 | 0.5761 | 0.4474 | 0.5761 | 0.7590 |
No log | 31.6923 | 412 | 0.5486 | 0.5484 | 0.5486 | 0.7407 |
No log | 31.8462 | 414 | 0.5479 | 0.5695 | 0.5479 | 0.7402 |
No log | 32.0 | 416 | 0.5555 | 0.5168 | 0.5555 | 0.7453 |
No log | 32.1538 | 418 | 0.5571 | 0.5109 | 0.5571 | 0.7464 |
No log | 32.3077 | 420 | 0.5557 | 0.5356 | 0.5557 | 0.7454 |
No log | 32.4615 | 422 | 0.5702 | 0.5909 | 0.5702 | 0.7551 |
No log | 32.6154 | 424 | 0.6007 | 0.5341 | 0.6007 | 0.7751 |
No log | 32.7692 | 426 | 0.6091 | 0.5399 | 0.6091 | 0.7804 |
No log | 32.9231 | 428 | 0.6041 | 0.5617 | 0.6041 | 0.7772 |
No log | 33.0769 | 430 | 0.5923 | 0.5597 | 0.5923 | 0.7696 |
No log | 33.2308 | 432 | 0.5655 | 0.5813 | 0.5655 | 0.7520 |
No log | 33.3846 | 434 | 0.5562 | 0.5944 | 0.5562 | 0.7458 |
No log | 33.5385 | 436 | 0.5479 | 0.5396 | 0.5479 | 0.7402 |
No log | 33.6923 | 438 | 0.5437 | 0.5409 | 0.5437 | 0.7374 |
No log | 33.8462 | 440 | 0.5594 | 0.6170 | 0.5594 | 0.7479 |
No log | 34.0 | 442 | 0.5932 | 0.5928 | 0.5932 | 0.7702 |
No log | 34.1538 | 444 | 0.5966 | 0.5741 | 0.5966 | 0.7724 |
No log | 34.3077 | 446 | 0.5628 | 0.5998 | 0.5628 | 0.7502 |
No log | 34.4615 | 448 | 0.5472 | 0.5222 | 0.5472 | 0.7397 |
No log | 34.6154 | 450 | 0.5488 | 0.4732 | 0.5488 | 0.7408 |
No log | 34.7692 | 452 | 0.5462 | 0.4526 | 0.5462 | 0.7390 |
No log | 34.9231 | 454 | 0.5403 | 0.4706 | 0.5403 | 0.7350 |
No log | 35.0769 | 456 | 0.5364 | 0.5088 | 0.5364 | 0.7324 |
No log | 35.2308 | 458 | 0.5390 | 0.5580 | 0.5390 | 0.7342 |
No log | 35.3846 | 460 | 0.5736 | 0.5724 | 0.5736 | 0.7574 |
No log | 35.5385 | 462 | 0.5931 | 0.5368 | 0.5931 | 0.7701 |
No log | 35.6923 | 464 | 0.5697 | 0.5491 | 0.5697 | 0.7548 |
No log | 35.8462 | 466 | 0.5640 | 0.5539 | 0.5640 | 0.7510 |
No log | 36.0 | 468 | 0.5715 | 0.5486 | 0.5715 | 0.7560 |
No log | 36.1538 | 470 | 0.6074 | 0.5580 | 0.6074 | 0.7794 |
No log | 36.3077 | 472 | 0.6527 | 0.5239 | 0.6527 | 0.8079 |
No log | 36.4615 | 474 | 0.6974 | 0.5162 | 0.6974 | 0.8351 |
No log | 36.6154 | 476 | 0.6833 | 0.5497 | 0.6833 | 0.8266 |
No log | 36.7692 | 478 | 0.6239 | 0.5567 | 0.6239 | 0.7899 |
No log | 36.9231 | 480 | 0.6040 | 0.5706 | 0.6040 | 0.7772 |
No log | 37.0769 | 482 | 0.5950 | 0.5725 | 0.5950 | 0.7713 |
No log | 37.2308 | 484 | 0.5756 | 0.5327 | 0.5756 | 0.7587 |
No log | 37.3846 | 486 | 0.5625 | 0.5409 | 0.5625 | 0.7500 |
No log | 37.5385 | 488 | 0.5670 | 0.5183 | 0.5670 | 0.7530 |
No log | 37.6923 | 490 | 0.5651 | 0.5097 | 0.5651 | 0.7517 |
No log | 37.8462 | 492 | 0.5578 | 0.5083 | 0.5578 | 0.7469 |
No log | 38.0 | 494 | 0.5517 | 0.5415 | 0.5517 | 0.7428 |
No log | 38.1538 | 496 | 0.5659 | 0.5729 | 0.5659 | 0.7523 |
No log | 38.3077 | 498 | 0.5843 | 0.5785 | 0.5843 | 0.7644 |
0.297 | 38.4615 | 500 | 0.5878 | 0.5617 | 0.5878 | 0.7667 |
0.297 | 38.6154 | 502 | 0.5672 | 0.5561 | 0.5672 | 0.7531 |
0.297 | 38.7692 | 504 | 0.5592 | 0.5572 | 0.5592 | 0.7478 |
0.297 | 38.9231 | 506 | 0.5644 | 0.5595 | 0.5644 | 0.7513 |
0.297 | 39.0769 | 508 | 0.5714 | 0.5595 | 0.5714 | 0.7559 |
0.297 | 39.2308 | 510 | 0.5838 | 0.5225 | 0.5838 | 0.7641 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MayBashendy/ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k2_task2_organization
Base model
aubmindlab/bert-base-arabertv02