ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k20_task2_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7490
- Qwk: 0.3708
- Mse: 0.7490
- Rmse: 0.8654
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0189 | 2 | 4.4368 | -0.0205 | 4.4368 | 2.1064 |
No log | 0.0377 | 4 | 2.7307 | 0.0138 | 2.7307 | 1.6525 |
No log | 0.0566 | 6 | 1.4197 | 0.0154 | 1.4197 | 1.1915 |
No log | 0.0755 | 8 | 1.0116 | -0.0138 | 1.0116 | 1.0058 |
No log | 0.0943 | 10 | 0.9497 | 0.0839 | 0.9497 | 0.9745 |
No log | 0.1132 | 12 | 0.8443 | 0.1058 | 0.8443 | 0.9189 |
No log | 0.1321 | 14 | 0.8337 | 0.0868 | 0.8337 | 0.9131 |
No log | 0.1509 | 16 | 0.8615 | 0.1140 | 0.8615 | 0.9282 |
No log | 0.1698 | 18 | 0.8354 | 0.0939 | 0.8354 | 0.9140 |
No log | 0.1887 | 20 | 0.8078 | 0.1292 | 0.8078 | 0.8988 |
No log | 0.2075 | 22 | 0.7873 | 0.1220 | 0.7873 | 0.8873 |
No log | 0.2264 | 24 | 0.7555 | 0.1148 | 0.7555 | 0.8692 |
No log | 0.2453 | 26 | 0.7395 | 0.1281 | 0.7395 | 0.8599 |
No log | 0.2642 | 28 | 0.7463 | 0.1865 | 0.7463 | 0.8639 |
No log | 0.2830 | 30 | 0.8179 | 0.2655 | 0.8179 | 0.9044 |
No log | 0.3019 | 32 | 0.9988 | 0.0738 | 0.9988 | 0.9994 |
No log | 0.3208 | 34 | 0.9778 | 0.0851 | 0.9778 | 0.9889 |
No log | 0.3396 | 36 | 0.9164 | 0.1776 | 0.9164 | 0.9573 |
No log | 0.3585 | 38 | 0.8284 | 0.2752 | 0.8284 | 0.9102 |
No log | 0.3774 | 40 | 0.7950 | 0.2285 | 0.7950 | 0.8916 |
No log | 0.3962 | 42 | 0.8631 | 0.0850 | 0.8631 | 0.9290 |
No log | 0.4151 | 44 | 0.9672 | 0.0600 | 0.9672 | 0.9835 |
No log | 0.4340 | 46 | 0.9830 | 0.0396 | 0.9830 | 0.9915 |
No log | 0.4528 | 48 | 1.0000 | 0.0137 | 1.0000 | 1.0000 |
No log | 0.4717 | 50 | 1.0646 | 0.0265 | 1.0646 | 1.0318 |
No log | 0.4906 | 52 | 1.0608 | 0.0641 | 1.0608 | 1.0299 |
No log | 0.5094 | 54 | 1.0936 | 0.1026 | 1.0936 | 1.0457 |
No log | 0.5283 | 56 | 0.9865 | 0.1499 | 0.9865 | 0.9932 |
No log | 0.5472 | 58 | 0.9178 | 0.1305 | 0.9178 | 0.9580 |
No log | 0.5660 | 60 | 1.0301 | 0.0679 | 1.0301 | 1.0149 |
No log | 0.5849 | 62 | 1.0140 | 0.0851 | 1.0140 | 1.0070 |
No log | 0.6038 | 64 | 0.8798 | 0.1027 | 0.8798 | 0.9380 |
No log | 0.6226 | 66 | 0.7923 | 0.1916 | 0.7923 | 0.8901 |
No log | 0.6415 | 68 | 0.8337 | 0.2802 | 0.8337 | 0.9131 |
No log | 0.6604 | 70 | 0.9104 | 0.2371 | 0.9104 | 0.9541 |
No log | 0.6792 | 72 | 0.9591 | 0.2048 | 0.9591 | 0.9793 |
No log | 0.6981 | 74 | 0.8685 | 0.2810 | 0.8685 | 0.9320 |
No log | 0.7170 | 76 | 0.8243 | 0.2312 | 0.8243 | 0.9079 |
No log | 0.7358 | 78 | 0.8235 | 0.2061 | 0.8235 | 0.9075 |
No log | 0.7547 | 80 | 0.8268 | 0.2059 | 0.8268 | 0.9093 |
No log | 0.7736 | 82 | 0.8069 | 0.2292 | 0.8069 | 0.8983 |
No log | 0.7925 | 84 | 0.8071 | 0.2390 | 0.8071 | 0.8984 |
No log | 0.8113 | 86 | 0.8349 | 0.3305 | 0.8349 | 0.9137 |
No log | 0.8302 | 88 | 0.8383 | 0.2787 | 0.8383 | 0.9156 |
No log | 0.8491 | 90 | 0.8629 | 0.3373 | 0.8629 | 0.9289 |
No log | 0.8679 | 92 | 0.9046 | 0.3274 | 0.9046 | 0.9511 |
No log | 0.8868 | 94 | 0.9222 | 0.3325 | 0.9222 | 0.9603 |
No log | 0.9057 | 96 | 0.8734 | 0.3250 | 0.8734 | 0.9345 |
No log | 0.9245 | 98 | 0.8382 | 0.3769 | 0.8382 | 0.9155 |
No log | 0.9434 | 100 | 0.8080 | 0.4064 | 0.8080 | 0.8989 |
No log | 0.9623 | 102 | 0.7792 | 0.3921 | 0.7792 | 0.8827 |
No log | 0.9811 | 104 | 0.7215 | 0.3912 | 0.7215 | 0.8494 |
No log | 1.0 | 106 | 0.7401 | 0.4013 | 0.7401 | 0.8603 |
No log | 1.0189 | 108 | 0.7638 | 0.3493 | 0.7638 | 0.8739 |
No log | 1.0377 | 110 | 0.7409 | 0.4072 | 0.7409 | 0.8607 |
No log | 1.0566 | 112 | 0.7789 | 0.3765 | 0.7789 | 0.8825 |
No log | 1.0755 | 114 | 0.8923 | 0.2318 | 0.8923 | 0.9446 |
No log | 1.0943 | 116 | 0.8752 | 0.3077 | 0.8752 | 0.9355 |
No log | 1.1132 | 118 | 0.8244 | 0.3716 | 0.8244 | 0.9080 |
No log | 1.1321 | 120 | 0.7817 | 0.4609 | 0.7817 | 0.8841 |
No log | 1.1509 | 122 | 0.7638 | 0.4588 | 0.7638 | 0.8740 |
No log | 1.1698 | 124 | 0.7753 | 0.4506 | 0.7753 | 0.8805 |
No log | 1.1887 | 126 | 0.8141 | 0.4525 | 0.8141 | 0.9023 |
No log | 1.2075 | 128 | 0.8969 | 0.4295 | 0.8969 | 0.9470 |
No log | 1.2264 | 130 | 0.8291 | 0.4382 | 0.8291 | 0.9106 |
No log | 1.2453 | 132 | 0.7504 | 0.4332 | 0.7504 | 0.8663 |
No log | 1.2642 | 134 | 0.8088 | 0.3879 | 0.8088 | 0.8993 |
No log | 1.2830 | 136 | 0.8275 | 0.3788 | 0.8275 | 0.9097 |
No log | 1.3019 | 138 | 0.8498 | 0.3999 | 0.8498 | 0.9218 |
No log | 1.3208 | 140 | 1.0144 | 0.3753 | 1.0144 | 1.0072 |
No log | 1.3396 | 142 | 1.0062 | 0.3780 | 1.0062 | 1.0031 |
No log | 1.3585 | 144 | 1.0261 | 0.3699 | 1.0261 | 1.0130 |
No log | 1.3774 | 146 | 0.9154 | 0.3854 | 0.9154 | 0.9568 |
No log | 1.3962 | 148 | 0.7305 | 0.3623 | 0.7305 | 0.8547 |
No log | 1.4151 | 150 | 0.7090 | 0.3618 | 0.7090 | 0.8420 |
No log | 1.4340 | 152 | 0.6929 | 0.3626 | 0.6929 | 0.8324 |
No log | 1.4528 | 154 | 0.6714 | 0.3861 | 0.6714 | 0.8194 |
No log | 1.4717 | 156 | 0.6826 | 0.4268 | 0.6826 | 0.8262 |
No log | 1.4906 | 158 | 0.6558 | 0.3740 | 0.6558 | 0.8098 |
No log | 1.5094 | 160 | 0.7207 | 0.3509 | 0.7207 | 0.8490 |
No log | 1.5283 | 162 | 0.8105 | 0.2503 | 0.8105 | 0.9003 |
No log | 1.5472 | 164 | 0.7781 | 0.3231 | 0.7781 | 0.8821 |
No log | 1.5660 | 166 | 0.6829 | 0.5189 | 0.6829 | 0.8264 |
No log | 1.5849 | 168 | 0.6880 | 0.4013 | 0.6880 | 0.8294 |
No log | 1.6038 | 170 | 0.6794 | 0.4408 | 0.6794 | 0.8242 |
No log | 1.6226 | 172 | 0.6674 | 0.5005 | 0.6674 | 0.8170 |
No log | 1.6415 | 174 | 0.6839 | 0.5063 | 0.6839 | 0.8270 |
No log | 1.6604 | 176 | 0.6772 | 0.4575 | 0.6772 | 0.8230 |
No log | 1.6792 | 178 | 0.6928 | 0.4364 | 0.6928 | 0.8323 |
No log | 1.6981 | 180 | 0.6644 | 0.4119 | 0.6644 | 0.8151 |
No log | 1.7170 | 182 | 0.6439 | 0.4926 | 0.6439 | 0.8024 |
No log | 1.7358 | 184 | 0.6452 | 0.4972 | 0.6452 | 0.8033 |
No log | 1.7547 | 186 | 0.6415 | 0.4887 | 0.6415 | 0.8009 |
No log | 1.7736 | 188 | 0.7166 | 0.4553 | 0.7166 | 0.8465 |
No log | 1.7925 | 190 | 0.8061 | 0.4604 | 0.8061 | 0.8979 |
No log | 1.8113 | 192 | 0.6945 | 0.4339 | 0.6945 | 0.8334 |
No log | 1.8302 | 194 | 0.6635 | 0.4637 | 0.6635 | 0.8146 |
No log | 1.8491 | 196 | 0.9174 | 0.3631 | 0.9174 | 0.9578 |
No log | 1.8679 | 198 | 0.9397 | 0.3575 | 0.9397 | 0.9694 |
No log | 1.8868 | 200 | 0.7229 | 0.4533 | 0.7229 | 0.8502 |
No log | 1.9057 | 202 | 0.6045 | 0.4490 | 0.6045 | 0.7775 |
No log | 1.9245 | 204 | 0.7507 | 0.4766 | 0.7507 | 0.8664 |
No log | 1.9434 | 206 | 0.9186 | 0.4285 | 0.9186 | 0.9584 |
No log | 1.9623 | 208 | 0.8012 | 0.4775 | 0.8012 | 0.8951 |
No log | 1.9811 | 210 | 0.6235 | 0.5227 | 0.6235 | 0.7896 |
No log | 2.0 | 212 | 0.5971 | 0.4185 | 0.5971 | 0.7727 |
No log | 2.0189 | 214 | 0.7121 | 0.4157 | 0.7121 | 0.8438 |
No log | 2.0377 | 216 | 0.7290 | 0.4001 | 0.7290 | 0.8538 |
No log | 2.0566 | 218 | 0.6394 | 0.4100 | 0.6394 | 0.7996 |
No log | 2.0755 | 220 | 0.5967 | 0.4808 | 0.5967 | 0.7725 |
No log | 2.0943 | 222 | 0.7219 | 0.5085 | 0.7219 | 0.8497 |
No log | 2.1132 | 224 | 0.8342 | 0.4915 | 0.8342 | 0.9133 |
No log | 2.1321 | 226 | 0.7616 | 0.5241 | 0.7616 | 0.8727 |
No log | 2.1509 | 228 | 0.6363 | 0.4728 | 0.6363 | 0.7977 |
No log | 2.1698 | 230 | 0.6188 | 0.3978 | 0.6188 | 0.7867 |
No log | 2.1887 | 232 | 0.6178 | 0.3970 | 0.6178 | 0.7860 |
No log | 2.2075 | 234 | 0.6640 | 0.5090 | 0.6640 | 0.8149 |
No log | 2.2264 | 236 | 0.7720 | 0.4919 | 0.7720 | 0.8786 |
No log | 2.2453 | 238 | 0.7819 | 0.4852 | 0.7819 | 0.8842 |
No log | 2.2642 | 240 | 0.7530 | 0.5055 | 0.7530 | 0.8677 |
No log | 2.2830 | 242 | 0.6920 | 0.4934 | 0.6920 | 0.8318 |
No log | 2.3019 | 244 | 0.6617 | 0.4410 | 0.6617 | 0.8134 |
No log | 2.3208 | 246 | 0.6793 | 0.4894 | 0.6793 | 0.8242 |
No log | 2.3396 | 248 | 0.6864 | 0.4891 | 0.6864 | 0.8285 |
No log | 2.3585 | 250 | 0.6715 | 0.4680 | 0.6715 | 0.8195 |
No log | 2.3774 | 252 | 0.6708 | 0.4866 | 0.6708 | 0.8190 |
No log | 2.3962 | 254 | 0.6697 | 0.4850 | 0.6697 | 0.8183 |
No log | 2.4151 | 256 | 0.6507 | 0.4862 | 0.6507 | 0.8067 |
No log | 2.4340 | 258 | 0.6623 | 0.4794 | 0.6623 | 0.8138 |
No log | 2.4528 | 260 | 0.7100 | 0.4987 | 0.7100 | 0.8426 |
No log | 2.4717 | 262 | 0.6941 | 0.5026 | 0.6941 | 0.8331 |
No log | 2.4906 | 264 | 0.6307 | 0.4545 | 0.6307 | 0.7942 |
No log | 2.5094 | 266 | 0.6610 | 0.4178 | 0.6610 | 0.8130 |
No log | 2.5283 | 268 | 0.6932 | 0.4064 | 0.6932 | 0.8326 |
No log | 2.5472 | 270 | 0.6691 | 0.4178 | 0.6691 | 0.8180 |
No log | 2.5660 | 272 | 0.6565 | 0.4676 | 0.6565 | 0.8103 |
No log | 2.5849 | 274 | 0.7164 | 0.4913 | 0.7164 | 0.8464 |
No log | 2.6038 | 276 | 0.7548 | 0.4728 | 0.7548 | 0.8688 |
No log | 2.6226 | 278 | 0.7423 | 0.4870 | 0.7423 | 0.8616 |
No log | 2.6415 | 280 | 0.7096 | 0.4972 | 0.7096 | 0.8424 |
No log | 2.6604 | 282 | 0.6697 | 0.4311 | 0.6697 | 0.8184 |
No log | 2.6792 | 284 | 0.6494 | 0.4429 | 0.6494 | 0.8059 |
No log | 2.6981 | 286 | 0.6582 | 0.4559 | 0.6582 | 0.8113 |
No log | 2.7170 | 288 | 0.7197 | 0.4842 | 0.7197 | 0.8483 |
No log | 2.7358 | 290 | 0.8058 | 0.4957 | 0.8058 | 0.8977 |
No log | 2.7547 | 292 | 0.7809 | 0.4829 | 0.7809 | 0.8837 |
No log | 2.7736 | 294 | 0.6605 | 0.5398 | 0.6605 | 0.8127 |
No log | 2.7925 | 296 | 0.5842 | 0.4344 | 0.5842 | 0.7644 |
No log | 2.8113 | 298 | 0.5820 | 0.4412 | 0.5820 | 0.7629 |
No log | 2.8302 | 300 | 0.5974 | 0.4370 | 0.5974 | 0.7729 |
No log | 2.8491 | 302 | 0.6344 | 0.4484 | 0.6344 | 0.7965 |
No log | 2.8679 | 304 | 0.6477 | 0.4435 | 0.6477 | 0.8048 |
No log | 2.8868 | 306 | 0.6471 | 0.4835 | 0.6471 | 0.8045 |
No log | 2.9057 | 308 | 0.6586 | 0.5039 | 0.6586 | 0.8116 |
No log | 2.9245 | 310 | 0.6850 | 0.4437 | 0.6850 | 0.8276 |
No log | 2.9434 | 312 | 0.7855 | 0.4285 | 0.7855 | 0.8863 |
No log | 2.9623 | 314 | 0.7990 | 0.3986 | 0.7990 | 0.8939 |
No log | 2.9811 | 316 | 0.7379 | 0.4352 | 0.7379 | 0.8590 |
No log | 3.0 | 318 | 0.7002 | 0.5373 | 0.7002 | 0.8368 |
No log | 3.0189 | 320 | 0.6763 | 0.5573 | 0.6763 | 0.8224 |
No log | 3.0377 | 322 | 0.6508 | 0.4957 | 0.6508 | 0.8067 |
No log | 3.0566 | 324 | 0.6588 | 0.3902 | 0.6588 | 0.8116 |
No log | 3.0755 | 326 | 0.7627 | 0.4229 | 0.7627 | 0.8733 |
No log | 3.0943 | 328 | 0.7925 | 0.4287 | 0.7925 | 0.8902 |
No log | 3.1132 | 330 | 0.6847 | 0.3982 | 0.6847 | 0.8275 |
No log | 3.1321 | 332 | 0.5926 | 0.4345 | 0.5926 | 0.7698 |
No log | 3.1509 | 334 | 0.6063 | 0.4934 | 0.6063 | 0.7787 |
No log | 3.1698 | 336 | 0.6325 | 0.4717 | 0.6325 | 0.7953 |
No log | 3.1887 | 338 | 0.6092 | 0.4792 | 0.6092 | 0.7805 |
No log | 3.2075 | 340 | 0.5799 | 0.4882 | 0.5799 | 0.7615 |
No log | 3.2264 | 342 | 0.5745 | 0.4185 | 0.5745 | 0.7580 |
No log | 3.2453 | 344 | 0.5781 | 0.4414 | 0.5781 | 0.7603 |
No log | 3.2642 | 346 | 0.5808 | 0.5363 | 0.5808 | 0.7621 |
No log | 3.2830 | 348 | 0.6059 | 0.4930 | 0.6059 | 0.7784 |
No log | 3.3019 | 350 | 0.6305 | 0.5033 | 0.6305 | 0.7940 |
No log | 3.3208 | 352 | 0.6547 | 0.5208 | 0.6547 | 0.8091 |
No log | 3.3396 | 354 | 0.6341 | 0.4985 | 0.6341 | 0.7963 |
No log | 3.3585 | 356 | 0.6285 | 0.5035 | 0.6285 | 0.7928 |
No log | 3.3774 | 358 | 0.6041 | 0.4446 | 0.6041 | 0.7773 |
No log | 3.3962 | 360 | 0.6036 | 0.4073 | 0.6036 | 0.7769 |
No log | 3.4151 | 362 | 0.6129 | 0.3415 | 0.6129 | 0.7829 |
No log | 3.4340 | 364 | 0.6051 | 0.3905 | 0.6051 | 0.7779 |
No log | 3.4528 | 366 | 0.6180 | 0.4648 | 0.6180 | 0.7861 |
No log | 3.4717 | 368 | 0.6256 | 0.4999 | 0.6256 | 0.7909 |
No log | 3.4906 | 370 | 0.5945 | 0.4998 | 0.5945 | 0.7710 |
No log | 3.5094 | 372 | 0.5911 | 0.3562 | 0.5911 | 0.7688 |
No log | 3.5283 | 374 | 0.5910 | 0.3212 | 0.5910 | 0.7688 |
No log | 3.5472 | 376 | 0.5940 | 0.3796 | 0.5940 | 0.7707 |
No log | 3.5660 | 378 | 0.6145 | 0.4370 | 0.6145 | 0.7839 |
No log | 3.5849 | 380 | 0.6265 | 0.4267 | 0.6265 | 0.7915 |
No log | 3.6038 | 382 | 0.6196 | 0.4002 | 0.6196 | 0.7872 |
No log | 3.6226 | 384 | 0.6325 | 0.4015 | 0.6325 | 0.7953 |
No log | 3.6415 | 386 | 0.7229 | 0.4201 | 0.7229 | 0.8502 |
No log | 3.6604 | 388 | 0.8653 | 0.3904 | 0.8653 | 0.9302 |
No log | 3.6792 | 390 | 0.8636 | 0.3855 | 0.8636 | 0.9293 |
No log | 3.6981 | 392 | 0.7432 | 0.3918 | 0.7432 | 0.8621 |
No log | 3.7170 | 394 | 0.6696 | 0.5158 | 0.6696 | 0.8183 |
No log | 3.7358 | 396 | 0.6952 | 0.4691 | 0.6952 | 0.8338 |
No log | 3.7547 | 398 | 0.7667 | 0.4745 | 0.7667 | 0.8756 |
No log | 3.7736 | 400 | 0.8142 | 0.4453 | 0.8142 | 0.9024 |
No log | 3.7925 | 402 | 0.7484 | 0.4745 | 0.7484 | 0.8651 |
No log | 3.8113 | 404 | 0.6647 | 0.4712 | 0.6647 | 0.8153 |
No log | 3.8302 | 406 | 0.6383 | 0.3866 | 0.6383 | 0.7989 |
No log | 3.8491 | 408 | 0.6440 | 0.3453 | 0.6440 | 0.8025 |
No log | 3.8679 | 410 | 0.6758 | 0.3858 | 0.6758 | 0.8221 |
No log | 3.8868 | 412 | 0.7073 | 0.4117 | 0.7073 | 0.8410 |
No log | 3.9057 | 414 | 0.7047 | 0.4490 | 0.7047 | 0.8395 |
No log | 3.9245 | 416 | 0.7153 | 0.4634 | 0.7153 | 0.8457 |
No log | 3.9434 | 418 | 0.7180 | 0.4609 | 0.7180 | 0.8473 |
No log | 3.9623 | 420 | 0.7042 | 0.4797 | 0.7042 | 0.8391 |
No log | 3.9811 | 422 | 0.6792 | 0.5140 | 0.6792 | 0.8241 |
No log | 4.0 | 424 | 0.6364 | 0.4686 | 0.6364 | 0.7978 |
No log | 4.0189 | 426 | 0.6154 | 0.4538 | 0.6154 | 0.7844 |
No log | 4.0377 | 428 | 0.6090 | 0.4902 | 0.6090 | 0.7804 |
No log | 4.0566 | 430 | 0.6221 | 0.4772 | 0.6221 | 0.7887 |
No log | 4.0755 | 432 | 0.6297 | 0.4972 | 0.6297 | 0.7935 |
No log | 4.0943 | 434 | 0.6368 | 0.4893 | 0.6368 | 0.7980 |
No log | 4.1132 | 436 | 0.6553 | 0.5038 | 0.6553 | 0.8095 |
No log | 4.1321 | 438 | 0.6616 | 0.4741 | 0.6616 | 0.8134 |
No log | 4.1509 | 440 | 0.6539 | 0.4700 | 0.6539 | 0.8086 |
No log | 4.1698 | 442 | 0.6751 | 0.5215 | 0.6751 | 0.8217 |
No log | 4.1887 | 444 | 0.6870 | 0.5177 | 0.6870 | 0.8289 |
No log | 4.2075 | 446 | 0.6896 | 0.5074 | 0.6896 | 0.8304 |
No log | 4.2264 | 448 | 0.6839 | 0.5197 | 0.6839 | 0.8270 |
No log | 4.2453 | 450 | 0.6775 | 0.5175 | 0.6775 | 0.8231 |
No log | 4.2642 | 452 | 0.6566 | 0.5404 | 0.6566 | 0.8103 |
No log | 4.2830 | 454 | 0.6231 | 0.5384 | 0.6231 | 0.7893 |
No log | 4.3019 | 456 | 0.5951 | 0.4708 | 0.5951 | 0.7714 |
No log | 4.3208 | 458 | 0.5857 | 0.4298 | 0.5857 | 0.7653 |
No log | 4.3396 | 460 | 0.6203 | 0.3799 | 0.6203 | 0.7876 |
No log | 4.3585 | 462 | 0.6411 | 0.3788 | 0.6411 | 0.8007 |
No log | 4.3774 | 464 | 0.6581 | 0.3884 | 0.6581 | 0.8112 |
No log | 4.3962 | 466 | 0.6402 | 0.4186 | 0.6402 | 0.8001 |
No log | 4.4151 | 468 | 0.6291 | 0.4649 | 0.6291 | 0.7931 |
No log | 4.4340 | 470 | 0.6279 | 0.4756 | 0.6279 | 0.7924 |
No log | 4.4528 | 472 | 0.6322 | 0.4878 | 0.6322 | 0.7951 |
No log | 4.4717 | 474 | 0.6641 | 0.4239 | 0.6641 | 0.8149 |
No log | 4.4906 | 476 | 0.7157 | 0.4039 | 0.7157 | 0.8460 |
No log | 4.5094 | 478 | 0.6987 | 0.4245 | 0.6987 | 0.8359 |
No log | 4.5283 | 480 | 0.6286 | 0.3991 | 0.6286 | 0.7928 |
No log | 4.5472 | 482 | 0.6065 | 0.4108 | 0.6065 | 0.7788 |
No log | 4.5660 | 484 | 0.6140 | 0.4866 | 0.6140 | 0.7836 |
No log | 4.5849 | 486 | 0.6091 | 0.4748 | 0.6091 | 0.7805 |
No log | 4.6038 | 488 | 0.5995 | 0.4078 | 0.5995 | 0.7743 |
No log | 4.6226 | 490 | 0.6137 | 0.3396 | 0.6137 | 0.7834 |
No log | 4.6415 | 492 | 0.6295 | 0.3580 | 0.6295 | 0.7934 |
No log | 4.6604 | 494 | 0.6263 | 0.3624 | 0.6263 | 0.7914 |
No log | 4.6792 | 496 | 0.6390 | 0.3594 | 0.6390 | 0.7994 |
No log | 4.6981 | 498 | 0.6142 | 0.3959 | 0.6142 | 0.7837 |
0.4402 | 4.7170 | 500 | 0.6138 | 0.4307 | 0.6138 | 0.7834 |
0.4402 | 4.7358 | 502 | 0.6346 | 0.3598 | 0.6346 | 0.7966 |
0.4402 | 4.7547 | 504 | 0.6983 | 0.3706 | 0.6983 | 0.8356 |
0.4402 | 4.7736 | 506 | 0.7812 | 0.3168 | 0.7812 | 0.8839 |
0.4402 | 4.7925 | 508 | 0.8082 | 0.3312 | 0.8082 | 0.8990 |
0.4402 | 4.8113 | 510 | 0.7490 | 0.3708 | 0.7490 | 0.8654 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MayBashendy/ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k20_task2_organization
Base model
aubmindlab/bert-base-arabertv02