ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k8_task2_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6179
- Qwk: 0.5816
- Mse: 0.6179
- Rmse: 0.7861
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0476 | 2 | 4.3388 | -0.0329 | 4.3388 | 2.0830 |
No log | 0.0952 | 4 | 2.4826 | 0.0431 | 2.4826 | 1.5756 |
No log | 0.1429 | 6 | 1.8727 | -0.0593 | 1.8727 | 1.3685 |
No log | 0.1905 | 8 | 1.1628 | -0.0409 | 1.1628 | 1.0783 |
No log | 0.2381 | 10 | 0.8145 | 0.2261 | 0.8145 | 0.9025 |
No log | 0.2857 | 12 | 0.9069 | 0.1184 | 0.9069 | 0.9523 |
No log | 0.3333 | 14 | 1.3428 | 0.0327 | 1.3428 | 1.1588 |
No log | 0.3810 | 16 | 1.7767 | 0.1060 | 1.7767 | 1.3329 |
No log | 0.4286 | 18 | 1.4344 | 0.1017 | 1.4344 | 1.1977 |
No log | 0.4762 | 20 | 0.8702 | 0.2748 | 0.8702 | 0.9328 |
No log | 0.5238 | 22 | 0.7338 | 0.2841 | 0.7338 | 0.8566 |
No log | 0.5714 | 24 | 0.8655 | 0.2578 | 0.8655 | 0.9303 |
No log | 0.6190 | 26 | 1.0401 | 0.1048 | 1.0401 | 1.0198 |
No log | 0.6667 | 28 | 1.0755 | 0.1472 | 1.0755 | 1.0371 |
No log | 0.7143 | 30 | 1.1730 | 0.0909 | 1.1730 | 1.0831 |
No log | 0.7619 | 32 | 1.1697 | 0.0909 | 1.1697 | 1.0815 |
No log | 0.8095 | 34 | 0.9375 | 0.2133 | 0.9375 | 0.9683 |
No log | 0.8571 | 36 | 0.8871 | 0.2314 | 0.8871 | 0.9419 |
No log | 0.9048 | 38 | 0.7807 | 0.2389 | 0.7807 | 0.8836 |
No log | 0.9524 | 40 | 0.7178 | 0.3520 | 0.7178 | 0.8472 |
No log | 1.0 | 42 | 0.7073 | 0.3449 | 0.7073 | 0.8410 |
No log | 1.0476 | 44 | 0.7190 | 0.3051 | 0.7190 | 0.8479 |
No log | 1.0952 | 46 | 0.7376 | 0.2940 | 0.7376 | 0.8588 |
No log | 1.1429 | 48 | 0.8110 | 0.2903 | 0.8110 | 0.9006 |
No log | 1.1905 | 50 | 0.8929 | 0.2314 | 0.8929 | 0.9449 |
No log | 1.2381 | 52 | 0.9143 | 0.1848 | 0.9143 | 0.9562 |
No log | 1.2857 | 54 | 0.9456 | 0.1400 | 0.9456 | 0.9724 |
No log | 1.3333 | 56 | 0.8248 | 0.2840 | 0.8248 | 0.9082 |
No log | 1.3810 | 58 | 0.7032 | 0.3466 | 0.7032 | 0.8386 |
No log | 1.4286 | 60 | 0.6598 | 0.4441 | 0.6598 | 0.8123 |
No log | 1.4762 | 62 | 0.6871 | 0.4503 | 0.6871 | 0.8289 |
No log | 1.5238 | 64 | 0.6949 | 0.4721 | 0.6949 | 0.8336 |
No log | 1.5714 | 66 | 0.6834 | 0.4453 | 0.6834 | 0.8267 |
No log | 1.6190 | 68 | 0.8323 | 0.4516 | 0.8323 | 0.9123 |
No log | 1.6667 | 70 | 1.3877 | 0.2706 | 1.3877 | 1.1780 |
No log | 1.7143 | 72 | 1.7977 | 0.2093 | 1.7977 | 1.3408 |
No log | 1.7619 | 74 | 1.5408 | 0.2556 | 1.5408 | 1.2413 |
No log | 1.8095 | 76 | 1.1491 | 0.3333 | 1.1491 | 1.0720 |
No log | 1.8571 | 78 | 1.0869 | 0.3332 | 1.0869 | 1.0425 |
No log | 1.9048 | 80 | 1.2373 | 0.2554 | 1.2373 | 1.1123 |
No log | 1.9524 | 82 | 1.4899 | 0.2882 | 1.4899 | 1.2206 |
No log | 2.0 | 84 | 1.5260 | 0.2816 | 1.5260 | 1.2353 |
No log | 2.0476 | 86 | 1.2409 | 0.3124 | 1.2409 | 1.1139 |
No log | 2.0952 | 88 | 0.8823 | 0.4631 | 0.8823 | 0.9393 |
No log | 2.1429 | 90 | 0.7551 | 0.5331 | 0.7551 | 0.8690 |
No log | 2.1905 | 92 | 0.6974 | 0.5448 | 0.6974 | 0.8351 |
No log | 2.2381 | 94 | 0.8040 | 0.5057 | 0.8040 | 0.8967 |
No log | 2.2857 | 96 | 0.8761 | 0.4514 | 0.8761 | 0.9360 |
No log | 2.3333 | 98 | 0.7475 | 0.4841 | 0.7475 | 0.8646 |
No log | 2.3810 | 100 | 0.7702 | 0.4547 | 0.7702 | 0.8776 |
No log | 2.4286 | 102 | 0.7852 | 0.4918 | 0.7852 | 0.8861 |
No log | 2.4762 | 104 | 0.7635 | 0.5177 | 0.7635 | 0.8738 |
No log | 2.5238 | 106 | 0.8441 | 0.5148 | 0.8441 | 0.9187 |
No log | 2.5714 | 108 | 0.8696 | 0.5295 | 0.8696 | 0.9325 |
No log | 2.6190 | 110 | 0.9353 | 0.5014 | 0.9353 | 0.9671 |
No log | 2.6667 | 112 | 1.1636 | 0.4739 | 1.1636 | 1.0787 |
No log | 2.7143 | 114 | 1.0650 | 0.4848 | 1.0650 | 1.0320 |
No log | 2.7619 | 116 | 0.9488 | 0.4921 | 0.9488 | 0.9741 |
No log | 2.8095 | 118 | 0.9727 | 0.4687 | 0.9727 | 0.9862 |
No log | 2.8571 | 120 | 0.8860 | 0.4619 | 0.8860 | 0.9413 |
No log | 2.9048 | 122 | 0.7025 | 0.4996 | 0.7025 | 0.8382 |
No log | 2.9524 | 124 | 0.5474 | 0.6644 | 0.5474 | 0.7399 |
No log | 3.0 | 126 | 0.5374 | 0.6552 | 0.5374 | 0.7331 |
No log | 3.0476 | 128 | 0.6113 | 0.5182 | 0.6113 | 0.7818 |
No log | 3.0952 | 130 | 0.6850 | 0.4778 | 0.6850 | 0.8276 |
No log | 3.1429 | 132 | 0.6457 | 0.4593 | 0.6457 | 0.8036 |
No log | 3.1905 | 134 | 0.5437 | 0.5702 | 0.5437 | 0.7374 |
No log | 3.2381 | 136 | 0.5509 | 0.5503 | 0.5509 | 0.7422 |
No log | 3.2857 | 138 | 0.5568 | 0.5185 | 0.5568 | 0.7462 |
No log | 3.3333 | 140 | 0.7013 | 0.4241 | 0.7013 | 0.8374 |
No log | 3.3810 | 142 | 0.8593 | 0.4453 | 0.8593 | 0.9270 |
No log | 3.4286 | 144 | 0.6925 | 0.4538 | 0.6925 | 0.8322 |
No log | 3.4762 | 146 | 0.5420 | 0.5778 | 0.5420 | 0.7362 |
No log | 3.5238 | 148 | 0.6662 | 0.4808 | 0.6662 | 0.8162 |
No log | 3.5714 | 150 | 0.6565 | 0.4680 | 0.6565 | 0.8102 |
No log | 3.6190 | 152 | 0.5310 | 0.5903 | 0.5310 | 0.7287 |
No log | 3.6667 | 154 | 0.6898 | 0.4983 | 0.6898 | 0.8306 |
No log | 3.7143 | 156 | 1.2309 | 0.3550 | 1.2309 | 1.1094 |
No log | 3.7619 | 158 | 1.5644 | 0.2473 | 1.5644 | 1.2508 |
No log | 3.8095 | 160 | 1.4034 | 0.2672 | 1.4034 | 1.1846 |
No log | 3.8571 | 162 | 0.9544 | 0.4588 | 0.9544 | 0.9769 |
No log | 3.9048 | 164 | 0.5715 | 0.5401 | 0.5715 | 0.7560 |
No log | 3.9524 | 166 | 0.5833 | 0.5526 | 0.5833 | 0.7637 |
No log | 4.0 | 168 | 0.6255 | 0.5048 | 0.6255 | 0.7909 |
No log | 4.0476 | 170 | 0.5911 | 0.5815 | 0.5911 | 0.7688 |
No log | 4.0952 | 172 | 0.6428 | 0.5772 | 0.6428 | 0.8018 |
No log | 4.1429 | 174 | 0.8085 | 0.4471 | 0.8085 | 0.8992 |
No log | 4.1905 | 176 | 0.8707 | 0.4319 | 0.8707 | 0.9331 |
No log | 4.2381 | 178 | 0.7563 | 0.4757 | 0.7563 | 0.8697 |
No log | 4.2857 | 180 | 0.6466 | 0.4303 | 0.6466 | 0.8041 |
No log | 4.3333 | 182 | 0.5578 | 0.5390 | 0.5578 | 0.7468 |
No log | 4.3810 | 184 | 0.5327 | 0.6191 | 0.5327 | 0.7298 |
No log | 4.4286 | 186 | 0.5836 | 0.5680 | 0.5836 | 0.7639 |
No log | 4.4762 | 188 | 0.5641 | 0.5867 | 0.5641 | 0.7511 |
No log | 4.5238 | 190 | 0.6002 | 0.5598 | 0.6002 | 0.7747 |
No log | 4.5714 | 192 | 0.6700 | 0.4835 | 0.6700 | 0.8185 |
No log | 4.6190 | 194 | 0.6806 | 0.4713 | 0.6806 | 0.8250 |
No log | 4.6667 | 196 | 0.6397 | 0.4744 | 0.6397 | 0.7998 |
No log | 4.7143 | 198 | 0.6163 | 0.4649 | 0.6163 | 0.7850 |
No log | 4.7619 | 200 | 0.6180 | 0.4819 | 0.6180 | 0.7862 |
No log | 4.8095 | 202 | 0.6756 | 0.5002 | 0.6756 | 0.8220 |
No log | 4.8571 | 204 | 0.7135 | 0.4876 | 0.7135 | 0.8447 |
No log | 4.9048 | 206 | 0.6340 | 0.4996 | 0.6340 | 0.7962 |
No log | 4.9524 | 208 | 0.6405 | 0.4983 | 0.6405 | 0.8003 |
No log | 5.0 | 210 | 0.7027 | 0.4876 | 0.7027 | 0.8383 |
No log | 5.0476 | 212 | 0.6644 | 0.4952 | 0.6644 | 0.8151 |
No log | 5.0952 | 214 | 0.5986 | 0.6093 | 0.5986 | 0.7737 |
No log | 5.1429 | 216 | 0.5904 | 0.5630 | 0.5904 | 0.7684 |
No log | 5.1905 | 218 | 0.6230 | 0.5063 | 0.6230 | 0.7893 |
No log | 5.2381 | 220 | 0.5915 | 0.5349 | 0.5915 | 0.7691 |
No log | 5.2857 | 222 | 0.5539 | 0.5571 | 0.5539 | 0.7442 |
No log | 5.3333 | 224 | 0.6630 | 0.4518 | 0.6630 | 0.8142 |
No log | 5.3810 | 226 | 0.7424 | 0.4745 | 0.7424 | 0.8616 |
No log | 5.4286 | 228 | 0.6915 | 0.5277 | 0.6915 | 0.8316 |
No log | 5.4762 | 230 | 0.6126 | 0.5944 | 0.6126 | 0.7827 |
No log | 5.5238 | 232 | 0.6255 | 0.5880 | 0.6255 | 0.7909 |
No log | 5.5714 | 234 | 0.7071 | 0.6107 | 0.7071 | 0.8409 |
No log | 5.6190 | 236 | 0.7587 | 0.5477 | 0.7587 | 0.8710 |
No log | 5.6667 | 238 | 0.6890 | 0.5741 | 0.6890 | 0.8301 |
No log | 5.7143 | 240 | 0.6180 | 0.4769 | 0.6180 | 0.7861 |
No log | 5.7619 | 242 | 0.6040 | 0.4582 | 0.6040 | 0.7772 |
No log | 5.8095 | 244 | 0.6025 | 0.4582 | 0.6025 | 0.7762 |
No log | 5.8571 | 246 | 0.6042 | 0.4724 | 0.6042 | 0.7773 |
No log | 5.9048 | 248 | 0.6068 | 0.5155 | 0.6068 | 0.7789 |
No log | 5.9524 | 250 | 0.6359 | 0.5349 | 0.6359 | 0.7974 |
No log | 6.0 | 252 | 0.6939 | 0.5898 | 0.6939 | 0.8330 |
No log | 6.0476 | 254 | 0.7488 | 0.5531 | 0.7488 | 0.8654 |
No log | 6.0952 | 256 | 0.6972 | 0.5781 | 0.6972 | 0.8350 |
No log | 6.1429 | 258 | 0.6370 | 0.5163 | 0.6370 | 0.7981 |
No log | 6.1905 | 260 | 0.6271 | 0.5307 | 0.6271 | 0.7919 |
No log | 6.2381 | 262 | 0.6555 | 0.5197 | 0.6555 | 0.8097 |
No log | 6.2857 | 264 | 0.7785 | 0.4876 | 0.7785 | 0.8823 |
No log | 6.3333 | 266 | 0.8935 | 0.4260 | 0.8935 | 0.9453 |
No log | 6.3810 | 268 | 0.8182 | 0.4475 | 0.8182 | 0.9045 |
No log | 6.4286 | 270 | 0.8217 | 0.4357 | 0.8217 | 0.9065 |
No log | 6.4762 | 272 | 0.7225 | 0.5163 | 0.7225 | 0.8500 |
No log | 6.5238 | 274 | 0.6518 | 0.5079 | 0.6518 | 0.8073 |
No log | 6.5714 | 276 | 0.6681 | 0.4991 | 0.6681 | 0.8174 |
No log | 6.6190 | 278 | 0.7879 | 0.4786 | 0.7879 | 0.8876 |
No log | 6.6667 | 280 | 0.8325 | 0.4508 | 0.8325 | 0.9124 |
No log | 6.7143 | 282 | 0.7545 | 0.4850 | 0.7545 | 0.8686 |
No log | 6.7619 | 284 | 0.6837 | 0.5021 | 0.6837 | 0.8268 |
No log | 6.8095 | 286 | 0.6190 | 0.5023 | 0.6190 | 0.7868 |
No log | 6.8571 | 288 | 0.6323 | 0.4991 | 0.6323 | 0.7952 |
No log | 6.9048 | 290 | 0.6632 | 0.5303 | 0.6632 | 0.8143 |
No log | 6.9524 | 292 | 0.6254 | 0.5156 | 0.6254 | 0.7908 |
No log | 7.0 | 294 | 0.6165 | 0.5511 | 0.6165 | 0.7852 |
No log | 7.0476 | 296 | 0.6433 | 0.5448 | 0.6433 | 0.8021 |
No log | 7.0952 | 298 | 0.6068 | 0.5729 | 0.6068 | 0.7790 |
No log | 7.1429 | 300 | 0.6076 | 0.4934 | 0.6076 | 0.7795 |
No log | 7.1905 | 302 | 0.7107 | 0.5019 | 0.7107 | 0.8430 |
No log | 7.2381 | 304 | 0.7110 | 0.4764 | 0.7110 | 0.8432 |
No log | 7.2857 | 306 | 0.6618 | 0.5079 | 0.6618 | 0.8135 |
No log | 7.3333 | 308 | 0.6410 | 0.5190 | 0.6410 | 0.8006 |
No log | 7.3810 | 310 | 0.6582 | 0.5058 | 0.6582 | 0.8113 |
No log | 7.4286 | 312 | 0.6516 | 0.4726 | 0.6516 | 0.8072 |
No log | 7.4762 | 314 | 0.5861 | 0.4617 | 0.5861 | 0.7656 |
No log | 7.5238 | 316 | 0.5942 | 0.5542 | 0.5942 | 0.7708 |
No log | 7.5714 | 318 | 0.6202 | 0.5659 | 0.6202 | 0.7875 |
No log | 7.6190 | 320 | 0.5999 | 0.5210 | 0.5999 | 0.7745 |
No log | 7.6667 | 322 | 0.5945 | 0.4723 | 0.5945 | 0.7711 |
No log | 7.7143 | 324 | 0.6041 | 0.4413 | 0.6041 | 0.7772 |
No log | 7.7619 | 326 | 0.6257 | 0.4467 | 0.6257 | 0.7910 |
No log | 7.8095 | 328 | 0.6211 | 0.4874 | 0.6211 | 0.7881 |
No log | 7.8571 | 330 | 0.6115 | 0.5732 | 0.6115 | 0.7820 |
No log | 7.9048 | 332 | 0.6147 | 0.6066 | 0.6147 | 0.7840 |
No log | 7.9524 | 334 | 0.6022 | 0.5768 | 0.6022 | 0.7760 |
No log | 8.0 | 336 | 0.5927 | 0.5582 | 0.5927 | 0.7699 |
No log | 8.0476 | 338 | 0.6258 | 0.5253 | 0.6258 | 0.7911 |
No log | 8.0952 | 340 | 0.6535 | 0.4632 | 0.6535 | 0.8084 |
No log | 8.1429 | 342 | 0.6308 | 0.4755 | 0.6308 | 0.7943 |
No log | 8.1905 | 344 | 0.5980 | 0.5515 | 0.5980 | 0.7733 |
No log | 8.2381 | 346 | 0.5910 | 0.6006 | 0.5910 | 0.7688 |
No log | 8.2857 | 348 | 0.5981 | 0.5763 | 0.5981 | 0.7734 |
No log | 8.3333 | 350 | 0.6076 | 0.6188 | 0.6076 | 0.7795 |
No log | 8.3810 | 352 | 0.6644 | 0.5805 | 0.6644 | 0.8151 |
No log | 8.4286 | 354 | 0.7842 | 0.5108 | 0.7842 | 0.8856 |
No log | 8.4762 | 356 | 0.7894 | 0.5108 | 0.7894 | 0.8885 |
No log | 8.5238 | 358 | 0.7384 | 0.5025 | 0.7384 | 0.8593 |
No log | 8.5714 | 360 | 0.6932 | 0.5263 | 0.6932 | 0.8326 |
No log | 8.6190 | 362 | 0.6250 | 0.5802 | 0.6250 | 0.7905 |
No log | 8.6667 | 364 | 0.6149 | 0.5726 | 0.6149 | 0.7841 |
No log | 8.7143 | 366 | 0.6226 | 0.4865 | 0.6226 | 0.7891 |
No log | 8.7619 | 368 | 0.6254 | 0.4924 | 0.6254 | 0.7908 |
No log | 8.8095 | 370 | 0.6049 | 0.4821 | 0.6049 | 0.7777 |
No log | 8.8571 | 372 | 0.6163 | 0.4966 | 0.6163 | 0.7850 |
No log | 8.9048 | 374 | 0.6463 | 0.4719 | 0.6463 | 0.8039 |
No log | 8.9524 | 376 | 0.6955 | 0.5171 | 0.6955 | 0.8339 |
No log | 9.0 | 378 | 0.8554 | 0.4715 | 0.8554 | 0.9249 |
No log | 9.0476 | 380 | 0.9114 | 0.4579 | 0.9114 | 0.9547 |
No log | 9.0952 | 382 | 0.7930 | 0.5106 | 0.7930 | 0.8905 |
No log | 9.1429 | 384 | 0.6580 | 0.5215 | 0.6580 | 0.8112 |
No log | 9.1905 | 386 | 0.6351 | 0.5455 | 0.6351 | 0.7969 |
No log | 9.2381 | 388 | 0.6283 | 0.5463 | 0.6283 | 0.7927 |
No log | 9.2857 | 390 | 0.6082 | 0.4399 | 0.6082 | 0.7798 |
No log | 9.3333 | 392 | 0.6265 | 0.4577 | 0.6265 | 0.7915 |
No log | 9.3810 | 394 | 0.6903 | 0.4845 | 0.6903 | 0.8308 |
No log | 9.4286 | 396 | 0.6832 | 0.4690 | 0.6832 | 0.8266 |
No log | 9.4762 | 398 | 0.6546 | 0.4915 | 0.6546 | 0.8091 |
No log | 9.5238 | 400 | 0.6345 | 0.5035 | 0.6345 | 0.7965 |
No log | 9.5714 | 402 | 0.6369 | 0.5719 | 0.6369 | 0.7981 |
No log | 9.6190 | 404 | 0.6432 | 0.5272 | 0.6432 | 0.8020 |
No log | 9.6667 | 406 | 0.6504 | 0.4817 | 0.6504 | 0.8065 |
No log | 9.7143 | 408 | 0.6101 | 0.5265 | 0.6101 | 0.7811 |
No log | 9.7619 | 410 | 0.5971 | 0.5513 | 0.5971 | 0.7727 |
No log | 9.8095 | 412 | 0.6019 | 0.5935 | 0.6019 | 0.7758 |
No log | 9.8571 | 414 | 0.6164 | 0.5576 | 0.6164 | 0.7851 |
No log | 9.9048 | 416 | 0.6201 | 0.5892 | 0.6201 | 0.7875 |
No log | 9.9524 | 418 | 0.6116 | 0.5737 | 0.6116 | 0.7821 |
No log | 10.0 | 420 | 0.6277 | 0.5476 | 0.6277 | 0.7923 |
No log | 10.0476 | 422 | 0.6744 | 0.5069 | 0.6744 | 0.8212 |
No log | 10.0952 | 424 | 0.6775 | 0.5058 | 0.6775 | 0.8231 |
No log | 10.1429 | 426 | 0.6183 | 0.5365 | 0.6183 | 0.7863 |
No log | 10.1905 | 428 | 0.6277 | 0.5715 | 0.6277 | 0.7923 |
No log | 10.2381 | 430 | 0.6304 | 0.5826 | 0.6304 | 0.7940 |
No log | 10.2857 | 432 | 0.6731 | 0.4997 | 0.6731 | 0.8204 |
No log | 10.3333 | 434 | 0.9078 | 0.4472 | 0.9078 | 0.9528 |
No log | 10.3810 | 436 | 1.0505 | 0.4193 | 1.0505 | 1.0249 |
No log | 10.4286 | 438 | 0.9402 | 0.4372 | 0.9402 | 0.9696 |
No log | 10.4762 | 440 | 0.7172 | 0.5084 | 0.7172 | 0.8469 |
No log | 10.5238 | 442 | 0.6402 | 0.5745 | 0.6402 | 0.8001 |
No log | 10.5714 | 444 | 0.6660 | 0.5256 | 0.6660 | 0.8161 |
No log | 10.6190 | 446 | 0.6290 | 0.5131 | 0.6290 | 0.7931 |
No log | 10.6667 | 448 | 0.5930 | 0.5434 | 0.5930 | 0.7701 |
No log | 10.7143 | 450 | 0.5640 | 0.5445 | 0.5640 | 0.7510 |
No log | 10.7619 | 452 | 0.5884 | 0.5132 | 0.5884 | 0.7671 |
No log | 10.8095 | 454 | 0.5945 | 0.5064 | 0.5945 | 0.7710 |
No log | 10.8571 | 456 | 0.5844 | 0.5476 | 0.5844 | 0.7645 |
No log | 10.9048 | 458 | 0.5959 | 0.6070 | 0.5959 | 0.7719 |
No log | 10.9524 | 460 | 0.6050 | 0.5957 | 0.6050 | 0.7778 |
No log | 11.0 | 462 | 0.5917 | 0.6155 | 0.5917 | 0.7693 |
No log | 11.0476 | 464 | 0.5850 | 0.5934 | 0.5850 | 0.7648 |
No log | 11.0952 | 466 | 0.5805 | 0.5584 | 0.5805 | 0.7619 |
No log | 11.1429 | 468 | 0.5906 | 0.5140 | 0.5906 | 0.7685 |
No log | 11.1905 | 470 | 0.6076 | 0.5036 | 0.6076 | 0.7795 |
No log | 11.2381 | 472 | 0.6116 | 0.4952 | 0.6116 | 0.7820 |
No log | 11.2857 | 474 | 0.6287 | 0.5053 | 0.6287 | 0.7929 |
No log | 11.3333 | 476 | 0.6277 | 0.5905 | 0.6277 | 0.7923 |
No log | 11.3810 | 478 | 0.6307 | 0.5723 | 0.6307 | 0.7942 |
No log | 11.4286 | 480 | 0.6168 | 0.5519 | 0.6168 | 0.7854 |
No log | 11.4762 | 482 | 0.6082 | 0.5254 | 0.6082 | 0.7799 |
No log | 11.5238 | 484 | 0.6104 | 0.4878 | 0.6104 | 0.7813 |
No log | 11.5714 | 486 | 0.5991 | 0.5960 | 0.5991 | 0.7740 |
No log | 11.6190 | 488 | 0.6051 | 0.6124 | 0.6051 | 0.7779 |
No log | 11.6667 | 490 | 0.5983 | 0.6286 | 0.5983 | 0.7735 |
No log | 11.7143 | 492 | 0.5889 | 0.5934 | 0.5889 | 0.7674 |
No log | 11.7619 | 494 | 0.6106 | 0.5197 | 0.6106 | 0.7814 |
No log | 11.8095 | 496 | 0.5973 | 0.5574 | 0.5973 | 0.7729 |
No log | 11.8571 | 498 | 0.6065 | 0.6249 | 0.6065 | 0.7788 |
0.36 | 11.9048 | 500 | 0.6251 | 0.5937 | 0.6251 | 0.7906 |
0.36 | 11.9524 | 502 | 0.6280 | 0.5793 | 0.6280 | 0.7925 |
0.36 | 12.0 | 504 | 0.6018 | 0.6085 | 0.6018 | 0.7758 |
0.36 | 12.0476 | 506 | 0.5882 | 0.5409 | 0.5882 | 0.7670 |
0.36 | 12.0952 | 508 | 0.5850 | 0.5757 | 0.5850 | 0.7649 |
0.36 | 12.1429 | 510 | 0.5918 | 0.5280 | 0.5918 | 0.7693 |
0.36 | 12.1905 | 512 | 0.6079 | 0.5431 | 0.6079 | 0.7797 |
0.36 | 12.2381 | 514 | 0.6179 | 0.5816 | 0.6179 | 0.7861 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MayBashendy/ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k8_task2_organization
Base model
aubmindlab/bert-base-arabertv02