ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k2_task2_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5894
- Qwk: 0.5567
- Mse: 0.5894
- Rmse: 0.7677
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.1538 | 2 | 4.3116 | -0.0182 | 4.3116 | 2.0764 |
No log | 0.3077 | 4 | 2.3385 | 0.0515 | 2.3385 | 1.5292 |
No log | 0.4615 | 6 | 1.2570 | 0.0205 | 1.2570 | 1.1212 |
No log | 0.6154 | 8 | 0.9952 | 0.0914 | 0.9952 | 0.9976 |
No log | 0.7692 | 10 | 0.8261 | 0.1334 | 0.8261 | 0.9089 |
No log | 0.9231 | 12 | 0.8115 | 0.1890 | 0.8115 | 0.9008 |
No log | 1.0769 | 14 | 0.8034 | 0.2070 | 0.8034 | 0.8964 |
No log | 1.2308 | 16 | 0.8602 | 0.2085 | 0.8602 | 0.9275 |
No log | 1.3846 | 18 | 0.9164 | 0.0963 | 0.9164 | 0.9573 |
No log | 1.5385 | 20 | 0.7889 | 0.2097 | 0.7889 | 0.8882 |
No log | 1.6923 | 22 | 0.7897 | 0.2354 | 0.7897 | 0.8887 |
No log | 1.8462 | 24 | 0.8660 | 0.2171 | 0.8660 | 0.9306 |
No log | 2.0 | 26 | 1.0060 | 0.1123 | 1.0060 | 1.0030 |
No log | 2.1538 | 28 | 1.0239 | 0.1344 | 1.0239 | 1.0119 |
No log | 2.3077 | 30 | 0.9387 | 0.1917 | 0.9387 | 0.9689 |
No log | 2.4615 | 32 | 0.7990 | 0.2641 | 0.7990 | 0.8939 |
No log | 2.6154 | 34 | 0.7643 | 0.2879 | 0.7643 | 0.8742 |
No log | 2.7692 | 36 | 0.8338 | 0.3295 | 0.8338 | 0.9131 |
No log | 2.9231 | 38 | 0.9564 | 0.2368 | 0.9564 | 0.9780 |
No log | 3.0769 | 40 | 1.1773 | 0.1047 | 1.1773 | 1.0850 |
No log | 3.2308 | 42 | 1.2979 | 0.1610 | 1.2979 | 1.1392 |
No log | 3.3846 | 44 | 0.9363 | 0.2752 | 0.9363 | 0.9676 |
No log | 3.5385 | 46 | 0.7218 | 0.4327 | 0.7218 | 0.8496 |
No log | 3.6923 | 48 | 0.6524 | 0.4528 | 0.6524 | 0.8077 |
No log | 3.8462 | 50 | 0.7101 | 0.4494 | 0.7101 | 0.8427 |
No log | 4.0 | 52 | 0.7788 | 0.4034 | 0.7788 | 0.8825 |
No log | 4.1538 | 54 | 0.7354 | 0.4453 | 0.7354 | 0.8575 |
No log | 4.3077 | 56 | 0.5932 | 0.4363 | 0.5932 | 0.7702 |
No log | 4.4615 | 58 | 0.5618 | 0.4911 | 0.5618 | 0.7496 |
No log | 4.6154 | 60 | 0.6000 | 0.4452 | 0.6000 | 0.7746 |
No log | 4.7692 | 62 | 0.9521 | 0.3262 | 0.9521 | 0.9758 |
No log | 4.9231 | 64 | 1.3765 | 0.2407 | 1.3765 | 1.1733 |
No log | 5.0769 | 66 | 1.4657 | 0.2103 | 1.4657 | 1.2107 |
No log | 5.2308 | 68 | 1.2175 | 0.3533 | 1.2175 | 1.1034 |
No log | 5.3846 | 70 | 0.8644 | 0.3619 | 0.8644 | 0.9297 |
No log | 5.5385 | 72 | 0.6556 | 0.4997 | 0.6556 | 0.8097 |
No log | 5.6923 | 74 | 0.6137 | 0.5565 | 0.6137 | 0.7834 |
No log | 5.8462 | 76 | 0.6095 | 0.5565 | 0.6095 | 0.7807 |
No log | 6.0 | 78 | 0.6446 | 0.4970 | 0.6446 | 0.8028 |
No log | 6.1538 | 80 | 0.7344 | 0.4989 | 0.7344 | 0.8570 |
No log | 6.3077 | 82 | 0.7993 | 0.4254 | 0.7993 | 0.8940 |
No log | 6.4615 | 84 | 0.9015 | 0.4033 | 0.9015 | 0.9494 |
No log | 6.6154 | 86 | 0.7990 | 0.4665 | 0.7990 | 0.8939 |
No log | 6.7692 | 88 | 0.8578 | 0.4775 | 0.8578 | 0.9262 |
No log | 6.9231 | 90 | 0.8367 | 0.4737 | 0.8367 | 0.9147 |
No log | 7.0769 | 92 | 0.7122 | 0.5261 | 0.7122 | 0.8439 |
No log | 7.2308 | 94 | 0.6845 | 0.5392 | 0.6845 | 0.8273 |
No log | 7.3846 | 96 | 0.6803 | 0.5545 | 0.6803 | 0.8248 |
No log | 7.5385 | 98 | 0.7367 | 0.4990 | 0.7367 | 0.8583 |
No log | 7.6923 | 100 | 0.6831 | 0.5464 | 0.6831 | 0.8265 |
No log | 7.8462 | 102 | 0.6597 | 0.5410 | 0.6597 | 0.8122 |
No log | 8.0 | 104 | 0.7110 | 0.5182 | 0.7110 | 0.8432 |
No log | 8.1538 | 106 | 0.7148 | 0.5143 | 0.7148 | 0.8455 |
No log | 8.3077 | 108 | 0.6891 | 0.5265 | 0.6891 | 0.8301 |
No log | 8.4615 | 110 | 0.6942 | 0.5192 | 0.6942 | 0.8332 |
No log | 8.6154 | 112 | 0.6282 | 0.5151 | 0.6282 | 0.7926 |
No log | 8.7692 | 114 | 0.6051 | 0.5534 | 0.6051 | 0.7779 |
No log | 8.9231 | 116 | 0.5873 | 0.5609 | 0.5873 | 0.7664 |
No log | 9.0769 | 118 | 0.6191 | 0.5540 | 0.6191 | 0.7869 |
No log | 9.2308 | 120 | 0.6522 | 0.5525 | 0.6522 | 0.8076 |
No log | 9.3846 | 122 | 0.6389 | 0.5064 | 0.6389 | 0.7993 |
No log | 9.5385 | 124 | 0.6985 | 0.5220 | 0.6985 | 0.8358 |
No log | 9.6923 | 126 | 0.6502 | 0.5392 | 0.6502 | 0.8063 |
No log | 9.8462 | 128 | 0.6246 | 0.5409 | 0.6246 | 0.7903 |
No log | 10.0 | 130 | 0.5952 | 0.5875 | 0.5952 | 0.7715 |
No log | 10.1538 | 132 | 0.5940 | 0.5149 | 0.5940 | 0.7707 |
No log | 10.3077 | 134 | 0.6107 | 0.5370 | 0.6107 | 0.7814 |
No log | 10.4615 | 136 | 0.6411 | 0.5193 | 0.6411 | 0.8007 |
No log | 10.6154 | 138 | 0.6924 | 0.5373 | 0.6924 | 0.8321 |
No log | 10.7692 | 140 | 0.6691 | 0.5225 | 0.6691 | 0.8180 |
No log | 10.9231 | 142 | 0.6649 | 0.5151 | 0.6649 | 0.8154 |
No log | 11.0769 | 144 | 0.6447 | 0.5317 | 0.6447 | 0.8029 |
No log | 11.2308 | 146 | 0.6535 | 0.5297 | 0.6535 | 0.8084 |
No log | 11.3846 | 148 | 0.7277 | 0.5295 | 0.7277 | 0.8530 |
No log | 11.5385 | 150 | 0.7171 | 0.5406 | 0.7171 | 0.8468 |
No log | 11.6923 | 152 | 0.6458 | 0.5109 | 0.6458 | 0.8036 |
No log | 11.8462 | 154 | 0.6660 | 0.5307 | 0.6660 | 0.8161 |
No log | 12.0 | 156 | 0.7077 | 0.5479 | 0.7077 | 0.8412 |
No log | 12.1538 | 158 | 0.7483 | 0.5402 | 0.7483 | 0.8650 |
No log | 12.3077 | 160 | 0.8243 | 0.4844 | 0.8243 | 0.9079 |
No log | 12.4615 | 162 | 0.7534 | 0.5372 | 0.7534 | 0.8680 |
No log | 12.6154 | 164 | 0.7162 | 0.5935 | 0.7162 | 0.8463 |
No log | 12.7692 | 166 | 0.7529 | 0.5791 | 0.7529 | 0.8677 |
No log | 12.9231 | 168 | 0.7366 | 0.5109 | 0.7366 | 0.8582 |
No log | 13.0769 | 170 | 0.6560 | 0.5849 | 0.6560 | 0.8100 |
No log | 13.2308 | 172 | 0.6421 | 0.5543 | 0.6421 | 0.8013 |
No log | 13.3846 | 174 | 0.6951 | 0.5528 | 0.6951 | 0.8337 |
No log | 13.5385 | 176 | 0.6497 | 0.5596 | 0.6497 | 0.8060 |
No log | 13.6923 | 178 | 0.6051 | 0.6266 | 0.6051 | 0.7779 |
No log | 13.8462 | 180 | 0.6258 | 0.6379 | 0.6258 | 0.7911 |
No log | 14.0 | 182 | 0.6274 | 0.6435 | 0.6274 | 0.7921 |
No log | 14.1538 | 184 | 0.6378 | 0.6227 | 0.6378 | 0.7986 |
No log | 14.3077 | 186 | 0.6395 | 0.5648 | 0.6395 | 0.7997 |
No log | 14.4615 | 188 | 0.6383 | 0.5294 | 0.6383 | 0.7990 |
No log | 14.6154 | 190 | 0.6127 | 0.5167 | 0.6127 | 0.7828 |
No log | 14.7692 | 192 | 0.6038 | 0.5403 | 0.6038 | 0.7771 |
No log | 14.9231 | 194 | 0.6124 | 0.5495 | 0.6124 | 0.7825 |
No log | 15.0769 | 196 | 0.6580 | 0.5500 | 0.6580 | 0.8112 |
No log | 15.2308 | 198 | 0.6219 | 0.5624 | 0.6219 | 0.7886 |
No log | 15.3846 | 200 | 0.6055 | 0.5773 | 0.6055 | 0.7782 |
No log | 15.5385 | 202 | 0.6600 | 0.5307 | 0.6600 | 0.8124 |
No log | 15.6923 | 204 | 0.7012 | 0.5160 | 0.7012 | 0.8374 |
No log | 15.8462 | 206 | 0.7003 | 0.5381 | 0.7003 | 0.8369 |
No log | 16.0 | 208 | 0.6518 | 0.5448 | 0.6518 | 0.8073 |
No log | 16.1538 | 210 | 0.6378 | 0.5548 | 0.6378 | 0.7986 |
No log | 16.3077 | 212 | 0.6182 | 0.5680 | 0.6182 | 0.7862 |
No log | 16.4615 | 214 | 0.6321 | 0.5680 | 0.6321 | 0.7950 |
No log | 16.6154 | 216 | 0.6251 | 0.5773 | 0.6251 | 0.7907 |
No log | 16.7692 | 218 | 0.6398 | 0.5666 | 0.6398 | 0.7999 |
No log | 16.9231 | 220 | 0.6556 | 0.5686 | 0.6556 | 0.8097 |
No log | 17.0769 | 222 | 0.6932 | 0.5665 | 0.6932 | 0.8326 |
No log | 17.2308 | 224 | 0.7259 | 0.5682 | 0.7259 | 0.8520 |
No log | 17.3846 | 226 | 0.7146 | 0.5687 | 0.7146 | 0.8453 |
No log | 17.5385 | 228 | 0.7116 | 0.5727 | 0.7116 | 0.8436 |
No log | 17.6923 | 230 | 0.6702 | 0.5799 | 0.6702 | 0.8186 |
No log | 17.8462 | 232 | 0.6384 | 0.5621 | 0.6384 | 0.7990 |
No log | 18.0 | 234 | 0.5951 | 0.6037 | 0.5951 | 0.7714 |
No log | 18.1538 | 236 | 0.6165 | 0.5410 | 0.6165 | 0.7851 |
No log | 18.3077 | 238 | 0.6096 | 0.5602 | 0.6096 | 0.7808 |
No log | 18.4615 | 240 | 0.6023 | 0.5596 | 0.6023 | 0.7761 |
No log | 18.6154 | 242 | 0.5937 | 0.5966 | 0.5937 | 0.7705 |
No log | 18.7692 | 244 | 0.5970 | 0.5875 | 0.5970 | 0.7726 |
No log | 18.9231 | 246 | 0.5934 | 0.6103 | 0.5934 | 0.7704 |
No log | 19.0769 | 248 | 0.6207 | 0.6089 | 0.6207 | 0.7878 |
No log | 19.2308 | 250 | 0.6606 | 0.5845 | 0.6606 | 0.8128 |
No log | 19.3846 | 252 | 0.6871 | 0.5069 | 0.6871 | 0.8289 |
No log | 19.5385 | 254 | 0.6838 | 0.4981 | 0.6838 | 0.8269 |
No log | 19.6923 | 256 | 0.6459 | 0.4866 | 0.6459 | 0.8037 |
No log | 19.8462 | 258 | 0.6168 | 0.5096 | 0.6168 | 0.7854 |
No log | 20.0 | 260 | 0.6379 | 0.4719 | 0.6379 | 0.7987 |
No log | 20.1538 | 262 | 0.6943 | 0.4904 | 0.6943 | 0.8332 |
No log | 20.3077 | 264 | 0.6726 | 0.4687 | 0.6726 | 0.8201 |
No log | 20.4615 | 266 | 0.5882 | 0.5552 | 0.5882 | 0.7670 |
No log | 20.6154 | 268 | 0.5684 | 0.5622 | 0.5684 | 0.7539 |
No log | 20.7692 | 270 | 0.5809 | 0.5380 | 0.5809 | 0.7622 |
No log | 20.9231 | 272 | 0.5871 | 0.5126 | 0.5871 | 0.7662 |
No log | 21.0769 | 274 | 0.5729 | 0.5443 | 0.5729 | 0.7569 |
No log | 21.2308 | 276 | 0.5721 | 0.6166 | 0.5721 | 0.7564 |
No log | 21.3846 | 278 | 0.5641 | 0.6147 | 0.5641 | 0.7511 |
No log | 21.5385 | 280 | 0.5683 | 0.5410 | 0.5683 | 0.7539 |
No log | 21.6923 | 282 | 0.6193 | 0.5128 | 0.6193 | 0.7870 |
No log | 21.8462 | 284 | 0.6968 | 0.5001 | 0.6968 | 0.8348 |
No log | 22.0 | 286 | 0.6635 | 0.5218 | 0.6635 | 0.8146 |
No log | 22.1538 | 288 | 0.5690 | 0.5485 | 0.5690 | 0.7543 |
No log | 22.3077 | 290 | 0.5430 | 0.6187 | 0.5430 | 0.7369 |
No log | 22.4615 | 292 | 0.5541 | 0.5883 | 0.5541 | 0.7444 |
No log | 22.6154 | 294 | 0.5674 | 0.5978 | 0.5674 | 0.7532 |
No log | 22.7692 | 296 | 0.5738 | 0.6074 | 0.5738 | 0.7575 |
No log | 22.9231 | 298 | 0.5920 | 0.5677 | 0.5920 | 0.7694 |
No log | 23.0769 | 300 | 0.5944 | 0.5660 | 0.5944 | 0.7710 |
No log | 23.2308 | 302 | 0.5925 | 0.5716 | 0.5925 | 0.7698 |
No log | 23.3846 | 304 | 0.5921 | 0.5075 | 0.5921 | 0.7695 |
No log | 23.5385 | 306 | 0.5687 | 0.5696 | 0.5687 | 0.7541 |
No log | 23.6923 | 308 | 0.5599 | 0.5861 | 0.5599 | 0.7482 |
No log | 23.8462 | 310 | 0.5542 | 0.5554 | 0.5542 | 0.7444 |
No log | 24.0 | 312 | 0.5550 | 0.5558 | 0.5550 | 0.7450 |
No log | 24.1538 | 314 | 0.5633 | 0.5779 | 0.5633 | 0.7505 |
No log | 24.3077 | 316 | 0.6042 | 0.5242 | 0.6042 | 0.7773 |
No log | 24.4615 | 318 | 0.6080 | 0.5845 | 0.6080 | 0.7797 |
No log | 24.6154 | 320 | 0.6116 | 0.5927 | 0.6116 | 0.7821 |
No log | 24.7692 | 322 | 0.6221 | 0.5767 | 0.6221 | 0.7887 |
No log | 24.9231 | 324 | 0.6132 | 0.5899 | 0.6132 | 0.7831 |
No log | 25.0769 | 326 | 0.6064 | 0.5507 | 0.6064 | 0.7787 |
No log | 25.2308 | 328 | 0.5984 | 0.5929 | 0.5984 | 0.7736 |
No log | 25.3846 | 330 | 0.5860 | 0.5521 | 0.5860 | 0.7655 |
No log | 25.5385 | 332 | 0.5898 | 0.5195 | 0.5898 | 0.7680 |
No log | 25.6923 | 334 | 0.6237 | 0.5345 | 0.6237 | 0.7898 |
No log | 25.8462 | 336 | 0.6620 | 0.5151 | 0.6620 | 0.8136 |
No log | 26.0 | 338 | 0.6377 | 0.5672 | 0.6377 | 0.7985 |
No log | 26.1538 | 340 | 0.6298 | 0.5742 | 0.6298 | 0.7936 |
No log | 26.3077 | 342 | 0.6465 | 0.5554 | 0.6465 | 0.8040 |
No log | 26.4615 | 344 | 0.6815 | 0.5471 | 0.6815 | 0.8255 |
No log | 26.6154 | 346 | 0.7248 | 0.5486 | 0.7248 | 0.8514 |
No log | 26.7692 | 348 | 0.7368 | 0.5547 | 0.7368 | 0.8584 |
No log | 26.9231 | 350 | 0.7296 | 0.5735 | 0.7296 | 0.8542 |
No log | 27.0769 | 352 | 0.7042 | 0.5929 | 0.7042 | 0.8392 |
No log | 27.2308 | 354 | 0.6832 | 0.6001 | 0.6832 | 0.8266 |
No log | 27.3846 | 356 | 0.6629 | 0.5782 | 0.6629 | 0.8142 |
No log | 27.5385 | 358 | 0.6447 | 0.5644 | 0.6447 | 0.8029 |
No log | 27.6923 | 360 | 0.6496 | 0.5253 | 0.6496 | 0.8060 |
No log | 27.8462 | 362 | 0.6367 | 0.5400 | 0.6367 | 0.7979 |
No log | 28.0 | 364 | 0.6092 | 0.5768 | 0.6092 | 0.7805 |
No log | 28.1538 | 366 | 0.6000 | 0.6187 | 0.6000 | 0.7746 |
No log | 28.3077 | 368 | 0.6112 | 0.6288 | 0.6112 | 0.7818 |
No log | 28.4615 | 370 | 0.6462 | 0.5934 | 0.6462 | 0.8039 |
No log | 28.6154 | 372 | 0.6619 | 0.5929 | 0.6619 | 0.8136 |
No log | 28.7692 | 374 | 0.6607 | 0.5968 | 0.6607 | 0.8128 |
No log | 28.9231 | 376 | 0.6329 | 0.5806 | 0.6329 | 0.7956 |
No log | 29.0769 | 378 | 0.6083 | 0.5802 | 0.6083 | 0.7799 |
No log | 29.2308 | 380 | 0.5940 | 0.5962 | 0.5940 | 0.7707 |
No log | 29.3846 | 382 | 0.5875 | 0.5700 | 0.5875 | 0.7665 |
No log | 29.5385 | 384 | 0.6170 | 0.5575 | 0.6170 | 0.7855 |
No log | 29.6923 | 386 | 0.6473 | 0.5195 | 0.6473 | 0.8045 |
No log | 29.8462 | 388 | 0.6347 | 0.5328 | 0.6347 | 0.7967 |
No log | 30.0 | 390 | 0.5871 | 0.5219 | 0.5871 | 0.7662 |
No log | 30.1538 | 392 | 0.5953 | 0.5534 | 0.5953 | 0.7715 |
No log | 30.3077 | 394 | 0.6241 | 0.5756 | 0.6241 | 0.7900 |
No log | 30.4615 | 396 | 0.6390 | 0.5583 | 0.6390 | 0.7994 |
No log | 30.6154 | 398 | 0.6229 | 0.5657 | 0.6229 | 0.7892 |
No log | 30.7692 | 400 | 0.5995 | 0.5585 | 0.5995 | 0.7743 |
No log | 30.9231 | 402 | 0.6007 | 0.5582 | 0.6007 | 0.7750 |
No log | 31.0769 | 404 | 0.5900 | 0.5642 | 0.5900 | 0.7681 |
No log | 31.2308 | 406 | 0.5735 | 0.5623 | 0.5735 | 0.7573 |
No log | 31.3846 | 408 | 0.5601 | 0.5492 | 0.5601 | 0.7484 |
No log | 31.5385 | 410 | 0.5580 | 0.5629 | 0.5580 | 0.7470 |
No log | 31.6923 | 412 | 0.5632 | 0.5857 | 0.5632 | 0.7505 |
No log | 31.8462 | 414 | 0.5720 | 0.5670 | 0.5720 | 0.7563 |
No log | 32.0 | 416 | 0.5573 | 0.5863 | 0.5573 | 0.7465 |
No log | 32.1538 | 418 | 0.5572 | 0.5563 | 0.5572 | 0.7465 |
No log | 32.3077 | 420 | 0.5733 | 0.5692 | 0.5733 | 0.7572 |
No log | 32.4615 | 422 | 0.5755 | 0.5655 | 0.5755 | 0.7586 |
No log | 32.6154 | 424 | 0.5690 | 0.5906 | 0.5690 | 0.7543 |
No log | 32.7692 | 426 | 0.5757 | 0.5882 | 0.5757 | 0.7587 |
No log | 32.9231 | 428 | 0.5998 | 0.5911 | 0.5998 | 0.7745 |
No log | 33.0769 | 430 | 0.6217 | 0.5672 | 0.6217 | 0.7885 |
No log | 33.2308 | 432 | 0.6264 | 0.5797 | 0.6264 | 0.7915 |
No log | 33.3846 | 434 | 0.6212 | 0.5911 | 0.6212 | 0.7881 |
No log | 33.5385 | 436 | 0.6090 | 0.5663 | 0.6090 | 0.7804 |
No log | 33.6923 | 438 | 0.6097 | 0.5758 | 0.6097 | 0.7808 |
No log | 33.8462 | 440 | 0.6194 | 0.5930 | 0.6194 | 0.7870 |
No log | 34.0 | 442 | 0.6618 | 0.5299 | 0.6618 | 0.8135 |
No log | 34.1538 | 444 | 0.6802 | 0.5279 | 0.6802 | 0.8247 |
No log | 34.3077 | 446 | 0.6446 | 0.5293 | 0.6446 | 0.8029 |
No log | 34.4615 | 448 | 0.6027 | 0.5804 | 0.6027 | 0.7763 |
No log | 34.6154 | 450 | 0.5900 | 0.5859 | 0.5900 | 0.7681 |
No log | 34.7692 | 452 | 0.5885 | 0.5479 | 0.5885 | 0.7671 |
No log | 34.9231 | 454 | 0.5837 | 0.5741 | 0.5837 | 0.7640 |
No log | 35.0769 | 456 | 0.5829 | 0.5838 | 0.5829 | 0.7635 |
No log | 35.2308 | 458 | 0.5848 | 0.5710 | 0.5848 | 0.7647 |
No log | 35.3846 | 460 | 0.5939 | 0.5752 | 0.5939 | 0.7706 |
No log | 35.5385 | 462 | 0.5965 | 0.5197 | 0.5965 | 0.7723 |
No log | 35.6923 | 464 | 0.6131 | 0.5361 | 0.6131 | 0.7830 |
No log | 35.8462 | 466 | 0.6203 | 0.5050 | 0.6203 | 0.7876 |
No log | 36.0 | 468 | 0.6283 | 0.4985 | 0.6283 | 0.7926 |
No log | 36.1538 | 470 | 0.6452 | 0.5438 | 0.6452 | 0.8033 |
No log | 36.3077 | 472 | 0.6548 | 0.5325 | 0.6548 | 0.8092 |
No log | 36.4615 | 474 | 0.6423 | 0.5364 | 0.6423 | 0.8015 |
No log | 36.6154 | 476 | 0.6368 | 0.5092 | 0.6368 | 0.7980 |
No log | 36.7692 | 478 | 0.6495 | 0.5380 | 0.6495 | 0.8059 |
No log | 36.9231 | 480 | 0.6557 | 0.5576 | 0.6557 | 0.8098 |
No log | 37.0769 | 482 | 0.6404 | 0.5528 | 0.6404 | 0.8003 |
No log | 37.2308 | 484 | 0.6395 | 0.5325 | 0.6395 | 0.7997 |
No log | 37.3846 | 486 | 0.6392 | 0.5287 | 0.6392 | 0.7995 |
No log | 37.5385 | 488 | 0.6172 | 0.5461 | 0.6172 | 0.7856 |
No log | 37.6923 | 490 | 0.5940 | 0.5799 | 0.5940 | 0.7707 |
No log | 37.8462 | 492 | 0.6014 | 0.5507 | 0.6014 | 0.7755 |
No log | 38.0 | 494 | 0.6108 | 0.5841 | 0.6108 | 0.7815 |
No log | 38.1538 | 496 | 0.6185 | 0.5899 | 0.6185 | 0.7864 |
No log | 38.3077 | 498 | 0.6430 | 0.6009 | 0.6430 | 0.8018 |
0.3104 | 38.4615 | 500 | 0.6473 | 0.5990 | 0.6473 | 0.8046 |
0.3104 | 38.6154 | 502 | 0.6343 | 0.5415 | 0.6343 | 0.7964 |
0.3104 | 38.7692 | 504 | 0.6185 | 0.5415 | 0.6185 | 0.7865 |
0.3104 | 38.9231 | 506 | 0.5955 | 0.5835 | 0.5955 | 0.7717 |
0.3104 | 39.0769 | 508 | 0.5923 | 0.5485 | 0.5923 | 0.7696 |
0.3104 | 39.2308 | 510 | 0.5894 | 0.5567 | 0.5894 | 0.7677 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MayBashendy/ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k2_task2_organization
Base model
aubmindlab/bert-base-arabertv02