ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k7_task1_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6535
- Qwk: 0.3333
- Mse: 1.6535
- Rmse: 1.2859
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0645 | 2 | 6.9880 | 0.0169 | 6.9880 | 2.6435 |
No log | 0.1290 | 4 | 4.3496 | 0.0591 | 4.3496 | 2.0856 |
No log | 0.1935 | 6 | 3.1359 | 0.0585 | 3.1359 | 1.7709 |
No log | 0.2581 | 8 | 2.5831 | 0.0966 | 2.5831 | 1.6072 |
No log | 0.3226 | 10 | 2.2475 | 0.0909 | 2.2475 | 1.4992 |
No log | 0.3871 | 12 | 1.7974 | 0.1739 | 1.7974 | 1.3407 |
No log | 0.4516 | 14 | 1.6831 | 0.2037 | 1.6831 | 1.2973 |
No log | 0.5161 | 16 | 1.6224 | 0.2202 | 1.6224 | 1.2737 |
No log | 0.5806 | 18 | 1.6444 | 0.2182 | 1.6444 | 1.2823 |
No log | 0.6452 | 20 | 1.8319 | 0.2975 | 1.8319 | 1.3535 |
No log | 0.7097 | 22 | 1.8449 | 0.2656 | 1.8449 | 1.3583 |
No log | 0.7742 | 24 | 1.7283 | 0.3802 | 1.7283 | 1.3146 |
No log | 0.8387 | 26 | 1.6158 | 0.3761 | 1.6158 | 1.2711 |
No log | 0.9032 | 28 | 1.4913 | 0.2857 | 1.4913 | 1.2212 |
No log | 0.9677 | 30 | 1.4036 | 0.2906 | 1.4036 | 1.1848 |
No log | 1.0323 | 32 | 1.3298 | 0.2832 | 1.3298 | 1.1532 |
No log | 1.0968 | 34 | 1.4797 | 0.2832 | 1.4797 | 1.2164 |
No log | 1.1613 | 36 | 1.4040 | 0.3684 | 1.4040 | 1.1849 |
No log | 1.2258 | 38 | 1.2961 | 0.4274 | 1.2961 | 1.1385 |
No log | 1.2903 | 40 | 1.2070 | 0.4463 | 1.2070 | 1.0986 |
No log | 1.3548 | 42 | 1.4923 | 0.3860 | 1.4923 | 1.2216 |
No log | 1.4194 | 44 | 2.0702 | 0.1333 | 2.0702 | 1.4388 |
No log | 1.4839 | 46 | 2.2175 | 0.0336 | 2.2175 | 1.4891 |
No log | 1.5484 | 48 | 1.8969 | 0.1607 | 1.8969 | 1.3773 |
No log | 1.6129 | 50 | 1.2968 | 0.3273 | 1.2968 | 1.1388 |
No log | 1.6774 | 52 | 1.1119 | 0.4746 | 1.1119 | 1.0545 |
No log | 1.7419 | 54 | 1.0665 | 0.5124 | 1.0665 | 1.0327 |
No log | 1.8065 | 56 | 1.0978 | 0.5124 | 1.0978 | 1.0478 |
No log | 1.8710 | 58 | 1.3019 | 0.5455 | 1.3019 | 1.1410 |
No log | 1.9355 | 60 | 1.5025 | 0.4375 | 1.5025 | 1.2258 |
No log | 2.0 | 62 | 1.4769 | 0.4444 | 1.4769 | 1.2153 |
No log | 2.0645 | 64 | 1.4668 | 0.4882 | 1.4668 | 1.2111 |
No log | 2.1290 | 66 | 1.4220 | 0.4394 | 1.4220 | 1.1925 |
No log | 2.1935 | 68 | 1.5104 | 0.4361 | 1.5104 | 1.2290 |
No log | 2.2581 | 70 | 1.5808 | 0.3852 | 1.5808 | 1.2573 |
No log | 2.3226 | 72 | 1.4500 | 0.4697 | 1.4500 | 1.2042 |
No log | 2.3871 | 74 | 1.2961 | 0.4615 | 1.2961 | 1.1385 |
No log | 2.4516 | 76 | 1.4005 | 0.4296 | 1.4005 | 1.1834 |
No log | 2.5161 | 78 | 1.5911 | 0.3407 | 1.5911 | 1.2614 |
No log | 2.5806 | 80 | 1.3666 | 0.3846 | 1.3666 | 1.1690 |
No log | 2.6452 | 82 | 1.4469 | 0.3333 | 1.4469 | 1.2029 |
No log | 2.7097 | 84 | 1.6867 | 0.2857 | 1.6867 | 1.2987 |
No log | 2.7742 | 86 | 1.5756 | 0.3089 | 1.5756 | 1.2552 |
No log | 2.8387 | 88 | 1.3267 | 0.4762 | 1.3267 | 1.1518 |
No log | 2.9032 | 90 | 1.4394 | 0.4219 | 1.4394 | 1.1997 |
No log | 2.9677 | 92 | 1.5023 | 0.4496 | 1.5023 | 1.2257 |
No log | 3.0323 | 94 | 1.3475 | 0.4580 | 1.3475 | 1.1608 |
No log | 3.0968 | 96 | 1.3459 | 0.4496 | 1.3459 | 1.1601 |
No log | 3.1613 | 98 | 1.2622 | 0.4688 | 1.2622 | 1.1235 |
No log | 3.2258 | 100 | 1.3110 | 0.4480 | 1.3110 | 1.1450 |
No log | 3.2903 | 102 | 1.2269 | 0.4426 | 1.2269 | 1.1077 |
No log | 3.3548 | 104 | 1.2652 | 0.5039 | 1.2652 | 1.1248 |
No log | 3.4194 | 106 | 1.1342 | 0.5397 | 1.1342 | 1.0650 |
No log | 3.4839 | 108 | 1.0553 | 0.6 | 1.0553 | 1.0273 |
No log | 3.5484 | 110 | 1.2214 | 0.5547 | 1.2214 | 1.1052 |
No log | 3.6129 | 112 | 1.7733 | 0.3357 | 1.7733 | 1.3317 |
No log | 3.6774 | 114 | 2.0820 | 0.1168 | 2.0820 | 1.4429 |
No log | 3.7419 | 116 | 2.0049 | 0.0305 | 2.0049 | 1.4160 |
No log | 3.8065 | 118 | 1.4915 | 0.4462 | 1.4915 | 1.2213 |
No log | 3.8710 | 120 | 1.0744 | 0.6165 | 1.0744 | 1.0365 |
No log | 3.9355 | 122 | 1.0273 | 0.6615 | 1.0273 | 1.0135 |
No log | 4.0 | 124 | 1.0187 | 0.6412 | 1.0187 | 1.0093 |
No log | 4.0645 | 126 | 1.1162 | 0.5778 | 1.1162 | 1.0565 |
No log | 4.1290 | 128 | 1.0991 | 0.5778 | 1.0991 | 1.0484 |
No log | 4.1935 | 130 | 0.9986 | 0.6094 | 0.9986 | 0.9993 |
No log | 4.2581 | 132 | 0.9168 | 0.64 | 0.9168 | 0.9575 |
No log | 4.3226 | 134 | 0.9233 | 0.6094 | 0.9233 | 0.9609 |
No log | 4.3871 | 136 | 0.9855 | 0.5984 | 0.9855 | 0.9927 |
No log | 4.4516 | 138 | 1.3843 | 0.4380 | 1.3843 | 1.1766 |
No log | 4.5161 | 140 | 1.5556 | 0.3944 | 1.5556 | 1.2472 |
No log | 4.5806 | 142 | 1.6535 | 0.3611 | 1.6535 | 1.2859 |
No log | 4.6452 | 144 | 1.7683 | 0.3425 | 1.7683 | 1.3298 |
No log | 4.7097 | 146 | 1.6560 | 0.3650 | 1.6560 | 1.2868 |
No log | 4.7742 | 148 | 1.6665 | 0.3433 | 1.6665 | 1.2909 |
No log | 4.8387 | 150 | 1.6213 | 0.3817 | 1.6213 | 1.2733 |
No log | 4.9032 | 152 | 1.4131 | 0.4848 | 1.4131 | 1.1887 |
No log | 4.9677 | 154 | 1.2856 | 0.4844 | 1.2856 | 1.1338 |
No log | 5.0323 | 156 | 1.2902 | 0.4724 | 1.2902 | 1.1359 |
No log | 5.0968 | 158 | 1.4896 | 0.4030 | 1.4896 | 1.2205 |
No log | 5.1613 | 160 | 1.6015 | 0.3944 | 1.6015 | 1.2655 |
No log | 5.2258 | 162 | 1.5200 | 0.3942 | 1.5200 | 1.2329 |
No log | 5.2903 | 164 | 1.3882 | 0.4627 | 1.3882 | 1.1782 |
No log | 5.3548 | 166 | 1.5377 | 0.3824 | 1.5377 | 1.2400 |
No log | 5.4194 | 168 | 1.7368 | 0.3546 | 1.7368 | 1.3179 |
No log | 5.4839 | 170 | 1.7214 | 0.3546 | 1.7214 | 1.3120 |
No log | 5.5484 | 172 | 1.5878 | 0.3824 | 1.5878 | 1.2601 |
No log | 5.6129 | 174 | 1.7067 | 0.3453 | 1.7067 | 1.3064 |
No log | 5.6774 | 176 | 1.6655 | 0.3382 | 1.6655 | 1.2906 |
No log | 5.7419 | 178 | 1.5418 | 0.4060 | 1.5418 | 1.2417 |
No log | 5.8065 | 180 | 1.5025 | 0.4234 | 1.5025 | 1.2258 |
No log | 5.8710 | 182 | 1.5611 | 0.4317 | 1.5611 | 1.2495 |
No log | 5.9355 | 184 | 1.7224 | 0.3099 | 1.7224 | 1.3124 |
No log | 6.0 | 186 | 1.8226 | 0.2917 | 1.8226 | 1.3500 |
No log | 6.0645 | 188 | 1.7593 | 0.3099 | 1.7593 | 1.3264 |
No log | 6.1290 | 190 | 1.5928 | 0.3913 | 1.5928 | 1.2621 |
No log | 6.1935 | 192 | 1.5751 | 0.4118 | 1.5751 | 1.2550 |
No log | 6.2581 | 194 | 1.5703 | 0.4118 | 1.5703 | 1.2531 |
No log | 6.3226 | 196 | 1.5488 | 0.3942 | 1.5488 | 1.2445 |
No log | 6.3871 | 198 | 1.2996 | 0.4889 | 1.2996 | 1.1400 |
No log | 6.4516 | 200 | 1.2106 | 0.5147 | 1.2106 | 1.1003 |
No log | 6.5161 | 202 | 1.3969 | 0.4604 | 1.3969 | 1.1819 |
No log | 6.5806 | 204 | 1.6866 | 0.3478 | 1.6866 | 1.2987 |
No log | 6.6452 | 206 | 1.8917 | 0.2517 | 1.8917 | 1.3754 |
No log | 6.7097 | 208 | 1.8366 | 0.2979 | 1.8366 | 1.3552 |
No log | 6.7742 | 210 | 1.6486 | 0.3478 | 1.6486 | 1.2840 |
No log | 6.8387 | 212 | 1.5711 | 0.3824 | 1.5711 | 1.2534 |
No log | 6.9032 | 214 | 1.3958 | 0.4733 | 1.3958 | 1.1815 |
No log | 6.9677 | 216 | 1.4660 | 0.4697 | 1.4660 | 1.2108 |
No log | 7.0323 | 218 | 1.4452 | 0.4733 | 1.4452 | 1.2021 |
No log | 7.0968 | 220 | 1.3993 | 0.4615 | 1.3993 | 1.1829 |
No log | 7.1613 | 222 | 1.4110 | 0.4662 | 1.4110 | 1.1879 |
No log | 7.2258 | 224 | 1.4202 | 0.4493 | 1.4202 | 1.1917 |
No log | 7.2903 | 226 | 1.5756 | 0.4234 | 1.5756 | 1.2552 |
No log | 7.3548 | 228 | 1.6040 | 0.4234 | 1.6040 | 1.2665 |
No log | 7.4194 | 230 | 1.3831 | 0.4818 | 1.3831 | 1.1760 |
No log | 7.4839 | 232 | 1.3209 | 0.4818 | 1.3209 | 1.1493 |
No log | 7.5484 | 234 | 1.3904 | 0.4748 | 1.3904 | 1.1792 |
No log | 7.6129 | 236 | 1.2512 | 0.5037 | 1.2512 | 1.1186 |
No log | 7.6774 | 238 | 1.0957 | 0.5970 | 1.0957 | 1.0468 |
No log | 7.7419 | 240 | 1.1410 | 0.5714 | 1.1410 | 1.0682 |
No log | 7.8065 | 242 | 1.2750 | 0.5191 | 1.2750 | 1.1292 |
No log | 7.8710 | 244 | 1.4380 | 0.4697 | 1.4380 | 1.1992 |
No log | 7.9355 | 246 | 1.3797 | 0.4531 | 1.3797 | 1.1746 |
No log | 8.0 | 248 | 1.3310 | 0.4806 | 1.3310 | 1.1537 |
No log | 8.0645 | 250 | 1.3017 | 0.5263 | 1.3017 | 1.1409 |
No log | 8.1290 | 252 | 1.4159 | 0.4962 | 1.4159 | 1.1899 |
No log | 8.1935 | 254 | 1.4917 | 0.4741 | 1.4917 | 1.2214 |
No log | 8.2581 | 256 | 1.4960 | 0.4857 | 1.4960 | 1.2231 |
No log | 8.3226 | 258 | 1.4633 | 0.5362 | 1.4633 | 1.2097 |
No log | 8.3871 | 260 | 1.4939 | 0.5036 | 1.4939 | 1.2223 |
No log | 8.4516 | 262 | 1.6059 | 0.4143 | 1.6059 | 1.2672 |
No log | 8.5161 | 264 | 1.6984 | 0.3404 | 1.6984 | 1.3032 |
No log | 8.5806 | 266 | 1.5662 | 0.4559 | 1.5662 | 1.2515 |
No log | 8.6452 | 268 | 1.3318 | 0.5113 | 1.3318 | 1.1540 |
No log | 8.7097 | 270 | 1.2628 | 0.5606 | 1.2628 | 1.1238 |
No log | 8.7742 | 272 | 1.2838 | 0.5522 | 1.2838 | 1.1330 |
No log | 8.8387 | 274 | 1.4833 | 0.4853 | 1.4833 | 1.2179 |
No log | 8.9032 | 276 | 1.5910 | 0.4029 | 1.5910 | 1.2613 |
No log | 8.9677 | 278 | 1.4652 | 0.5036 | 1.4652 | 1.2104 |
No log | 9.0323 | 280 | 1.3454 | 0.5362 | 1.3454 | 1.1599 |
No log | 9.0968 | 282 | 1.1482 | 0.5970 | 1.1482 | 1.0715 |
No log | 9.1613 | 284 | 1.0443 | 0.6061 | 1.0443 | 1.0219 |
No log | 9.2258 | 286 | 1.0784 | 0.5970 | 1.0784 | 1.0385 |
No log | 9.2903 | 288 | 1.2612 | 0.5455 | 1.2612 | 1.1230 |
No log | 9.3548 | 290 | 1.4580 | 0.4662 | 1.4580 | 1.2075 |
No log | 9.4194 | 292 | 1.4246 | 0.4662 | 1.4246 | 1.1936 |
No log | 9.4839 | 294 | 1.2928 | 0.5303 | 1.2928 | 1.1370 |
No log | 9.5484 | 296 | 1.2486 | 0.5909 | 1.2486 | 1.1174 |
No log | 9.6129 | 298 | 1.2943 | 0.5522 | 1.2943 | 1.1377 |
No log | 9.6774 | 300 | 1.3065 | 0.5522 | 1.3065 | 1.1430 |
No log | 9.7419 | 302 | 1.5013 | 0.4060 | 1.5013 | 1.2253 |
No log | 9.8065 | 304 | 1.6523 | 0.3043 | 1.6523 | 1.2854 |
No log | 9.8710 | 306 | 1.5590 | 0.3704 | 1.5590 | 1.2486 |
No log | 9.9355 | 308 | 1.4003 | 0.4706 | 1.4003 | 1.1834 |
No log | 10.0 | 310 | 1.3126 | 0.5547 | 1.3126 | 1.1457 |
No log | 10.0645 | 312 | 1.3694 | 0.4733 | 1.3694 | 1.1702 |
No log | 10.1290 | 314 | 1.3353 | 0.4733 | 1.3353 | 1.1556 |
No log | 10.1935 | 316 | 1.3638 | 0.4733 | 1.3638 | 1.1678 |
No log | 10.2581 | 318 | 1.4465 | 0.4361 | 1.4465 | 1.2027 |
No log | 10.3226 | 320 | 1.4831 | 0.3846 | 1.4831 | 1.2178 |
No log | 10.3871 | 322 | 1.7145 | 0.2388 | 1.7145 | 1.3094 |
No log | 10.4516 | 324 | 1.6888 | 0.2482 | 1.6888 | 1.2996 |
No log | 10.5161 | 326 | 1.6201 | 0.3358 | 1.6201 | 1.2728 |
No log | 10.5806 | 328 | 1.3767 | 0.5 | 1.3767 | 1.1733 |
No log | 10.6452 | 330 | 1.3106 | 0.5 | 1.3106 | 1.1448 |
No log | 10.7097 | 332 | 1.5346 | 0.3759 | 1.5346 | 1.2388 |
No log | 10.7742 | 334 | 1.4917 | 0.3759 | 1.4917 | 1.2214 |
No log | 10.8387 | 336 | 1.3373 | 0.5075 | 1.3373 | 1.1564 |
No log | 10.9032 | 338 | 1.2047 | 0.5414 | 1.2047 | 1.0976 |
No log | 10.9677 | 340 | 1.1750 | 0.5481 | 1.1750 | 1.0840 |
No log | 11.0323 | 342 | 1.3150 | 0.4593 | 1.3150 | 1.1467 |
No log | 11.0968 | 344 | 1.3609 | 0.4593 | 1.3609 | 1.1666 |
No log | 11.1613 | 346 | 1.2969 | 0.5468 | 1.2969 | 1.1388 |
No log | 11.2258 | 348 | 1.3027 | 0.5362 | 1.3027 | 1.1413 |
No log | 11.2903 | 350 | 1.2698 | 0.5362 | 1.2698 | 1.1269 |
No log | 11.3548 | 352 | 1.1424 | 0.5926 | 1.1424 | 1.0688 |
No log | 11.4194 | 354 | 1.1378 | 0.5606 | 1.1378 | 1.0667 |
No log | 11.4839 | 356 | 1.1984 | 0.5758 | 1.1984 | 1.0947 |
No log | 11.5484 | 358 | 1.3104 | 0.5037 | 1.3104 | 1.1447 |
No log | 11.6129 | 360 | 1.4517 | 0.5072 | 1.4517 | 1.2049 |
No log | 11.6774 | 362 | 1.5357 | 0.4397 | 1.5357 | 1.2392 |
No log | 11.7419 | 364 | 1.4615 | 0.5072 | 1.4615 | 1.2089 |
No log | 11.8065 | 366 | 1.3918 | 0.5147 | 1.3918 | 1.1797 |
No log | 11.8710 | 368 | 1.3952 | 0.5147 | 1.3952 | 1.1812 |
No log | 11.9355 | 370 | 1.5619 | 0.4056 | 1.5619 | 1.2498 |
No log | 12.0 | 372 | 1.7398 | 0.3172 | 1.7398 | 1.3190 |
No log | 12.0645 | 374 | 1.6687 | 0.3401 | 1.6687 | 1.2918 |
No log | 12.1290 | 376 | 1.5194 | 0.4429 | 1.5194 | 1.2326 |
No log | 12.1935 | 378 | 1.4637 | 0.4818 | 1.4637 | 1.2098 |
No log | 12.2581 | 380 | 1.5037 | 0.4255 | 1.5037 | 1.2262 |
No log | 12.3226 | 382 | 1.5277 | 0.4203 | 1.5277 | 1.2360 |
No log | 12.3871 | 384 | 1.6098 | 0.4 | 1.6098 | 1.2688 |
No log | 12.4516 | 386 | 1.7159 | 0.2837 | 1.7159 | 1.3099 |
No log | 12.5161 | 388 | 1.7363 | 0.2676 | 1.7363 | 1.3177 |
No log | 12.5806 | 390 | 1.6244 | 0.3286 | 1.6244 | 1.2745 |
No log | 12.6452 | 392 | 1.4474 | 0.4444 | 1.4474 | 1.2031 |
No log | 12.7097 | 394 | 1.3312 | 0.5147 | 1.3312 | 1.1538 |
No log | 12.7742 | 396 | 1.3936 | 0.4748 | 1.3936 | 1.1805 |
No log | 12.8387 | 398 | 1.5362 | 0.3611 | 1.5362 | 1.2394 |
No log | 12.9032 | 400 | 1.6307 | 0.3404 | 1.6307 | 1.2770 |
No log | 12.9677 | 402 | 1.6749 | 0.3404 | 1.6749 | 1.2942 |
No log | 13.0323 | 404 | 1.6764 | 0.3309 | 1.6764 | 1.2948 |
No log | 13.0968 | 406 | 1.5867 | 0.3796 | 1.5867 | 1.2597 |
No log | 13.1613 | 408 | 1.4412 | 0.4962 | 1.4412 | 1.2005 |
No log | 13.2258 | 410 | 1.2690 | 0.5246 | 1.2690 | 1.1265 |
No log | 13.2903 | 412 | 1.2295 | 0.5760 | 1.2295 | 1.1088 |
No log | 13.3548 | 414 | 1.2341 | 0.5484 | 1.2341 | 1.1109 |
No log | 13.4194 | 416 | 1.3021 | 0.528 | 1.3021 | 1.1411 |
No log | 13.4839 | 418 | 1.4943 | 0.4962 | 1.4943 | 1.2224 |
No log | 13.5484 | 420 | 1.7647 | 0.2446 | 1.7647 | 1.3284 |
No log | 13.6129 | 422 | 1.8225 | 0.2429 | 1.8225 | 1.3500 |
No log | 13.6774 | 424 | 1.6913 | 0.2714 | 1.6913 | 1.3005 |
No log | 13.7419 | 426 | 1.4214 | 0.4962 | 1.4214 | 1.1922 |
No log | 13.8065 | 428 | 1.2301 | 0.5414 | 1.2301 | 1.1091 |
No log | 13.8710 | 430 | 1.2099 | 0.5588 | 1.2099 | 1.1000 |
No log | 13.9355 | 432 | 1.3233 | 0.5152 | 1.3233 | 1.1504 |
No log | 14.0 | 434 | 1.5743 | 0.3913 | 1.5743 | 1.2547 |
No log | 14.0645 | 436 | 1.7329 | 0.2878 | 1.7329 | 1.3164 |
No log | 14.1290 | 438 | 1.7026 | 0.3212 | 1.7026 | 1.3048 |
No log | 14.1935 | 440 | 1.5562 | 0.4741 | 1.5562 | 1.2475 |
No log | 14.2581 | 442 | 1.4491 | 0.4848 | 1.4491 | 1.2038 |
No log | 14.3226 | 444 | 1.3622 | 0.4651 | 1.3622 | 1.1672 |
No log | 14.3871 | 446 | 1.3183 | 0.5000 | 1.3183 | 1.1482 |
No log | 14.4516 | 448 | 1.2589 | 0.5397 | 1.2589 | 1.1220 |
No log | 14.5161 | 450 | 1.2767 | 0.5581 | 1.2767 | 1.1299 |
No log | 14.5806 | 452 | 1.4230 | 0.4412 | 1.4230 | 1.1929 |
No log | 14.6452 | 454 | 1.4666 | 0.4058 | 1.4666 | 1.2110 |
No log | 14.7097 | 456 | 1.4419 | 0.4234 | 1.4419 | 1.2008 |
No log | 14.7742 | 458 | 1.3728 | 0.4962 | 1.3728 | 1.1717 |
No log | 14.8387 | 460 | 1.2907 | 0.5625 | 1.2907 | 1.1361 |
No log | 14.9032 | 462 | 1.2950 | 0.56 | 1.2950 | 1.1380 |
No log | 14.9677 | 464 | 1.3284 | 0.5238 | 1.3284 | 1.1526 |
No log | 15.0323 | 466 | 1.3261 | 0.5354 | 1.3261 | 1.1516 |
No log | 15.0968 | 468 | 1.3238 | 0.5385 | 1.3238 | 1.1506 |
No log | 15.1613 | 470 | 1.3689 | 0.5286 | 1.3689 | 1.1700 |
No log | 15.2258 | 472 | 1.4960 | 0.3944 | 1.4960 | 1.2231 |
No log | 15.2903 | 474 | 1.5731 | 0.3776 | 1.5731 | 1.2542 |
No log | 15.3548 | 476 | 1.6362 | 0.3611 | 1.6362 | 1.2791 |
No log | 15.4194 | 478 | 1.6016 | 0.3885 | 1.6016 | 1.2655 |
No log | 15.4839 | 480 | 1.5506 | 0.4380 | 1.5506 | 1.2452 |
No log | 15.5484 | 482 | 1.4530 | 0.4545 | 1.4530 | 1.2054 |
No log | 15.6129 | 484 | 1.3966 | 0.4662 | 1.3966 | 1.1818 |
No log | 15.6774 | 486 | 1.3689 | 0.4662 | 1.3689 | 1.1700 |
No log | 15.7419 | 488 | 1.4659 | 0.4593 | 1.4659 | 1.2107 |
No log | 15.8065 | 490 | 1.6037 | 0.3857 | 1.6037 | 1.2664 |
No log | 15.8710 | 492 | 1.6493 | 0.3546 | 1.6493 | 1.2843 |
No log | 15.9355 | 494 | 1.6701 | 0.3546 | 1.6701 | 1.2923 |
No log | 16.0 | 496 | 1.6053 | 0.3857 | 1.6053 | 1.2670 |
No log | 16.0645 | 498 | 1.5005 | 0.4593 | 1.5005 | 1.2249 |
0.3323 | 16.1290 | 500 | 1.4632 | 0.4545 | 1.4632 | 1.2096 |
0.3323 | 16.1935 | 502 | 1.4392 | 0.4615 | 1.4392 | 1.1997 |
0.3323 | 16.2581 | 504 | 1.5023 | 0.4 | 1.5023 | 1.2257 |
0.3323 | 16.3226 | 506 | 1.5435 | 0.3759 | 1.5435 | 1.2424 |
0.3323 | 16.3871 | 508 | 1.6353 | 0.3731 | 1.6353 | 1.2788 |
0.3323 | 16.4516 | 510 | 1.6754 | 0.3333 | 1.6754 | 1.2944 |
0.3323 | 16.5161 | 512 | 1.6535 | 0.3333 | 1.6535 | 1.2859 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MayBashendy/ArabicNewSplits7_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k7_task1_organization
Base model
aubmindlab/bert-base-arabertv02