whisper-lang-id
This model is a fine-tuned version of openai/whisper-tiny on mozilla-foundation/common_voice_11_0 dataset
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Mozilla foundation/common_voice_11.0
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 175 | 0.0148 | 0.995 | 0.9950 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.
Example Usage
Here is an example of how to use the model for Language Idenfication with Gradio:
import torch
from transformers import pipeline
import gradio as gr
# Use a pipeline as a high-level helper
pipe = pipeline("audio-classification", model="Lingalingeswaran/whisper-lang-id")
def identify_language(audio_file):
"""Identifies the language of an audio file."""
try:
result = pipe(audio_file)
predicted_label = result[0]['label']
score = result[0]['score']
if predicted_label == "LABEL_0":
predicted_label = "Tamil"
elif predicted_label == "LABEL_1":
predicted_label = "English"
else:
predicted_label = predicted_label
return f"Predicted Language: {predicted_label}, Score: {score:.4f}"
except Exception as e:
return f"Error during language identification: {e}"
# Gradio interface
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("### Language Identification from Audio File")
gr.Markdown("Upload an audio file or use your microphone to detect the language spoken.")
# Corrected the sources argument
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record or Upload Audio")
result_output = gr.Textbox(label="Language Identification Result", interactive=False)
# Submit button
submit_btn = gr.Button("Submit")
submit_btn.click(identify_language, inputs=audio_input, outputs=result_output)
# Clear button
clear_btn = gr.Button("Clear")
clear_btn.click(lambda: (None, None), outputs=[audio_input, result_output]) # Clear audio and result
demo.launch()
# Run the Gradio interface
create_gradio_interface()
- Downloads last month
- 118
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Lingalingeswaran/whisper-lang-id
Base model
openai/whisper-tiny