RuBERTConv Toxic Classifier

Model description

Based on rubert-base-cased-conversational model

Intended uses & limitations

How to use

Colab: link

from transformers import pipeline

model_name = "IlyaGusev/rubertconv_toxic_clf"
pipe = pipeline("text-classification", model=model_name, tokenizer=model_name, framework="pt") 

text = "Ты придурок из интернета"
pipe([text])

Training data

Datasets:

Augmentations:

  • ё -> е
  • Remove or add "?" or "!"
  • Fix CAPS
  • Concatenate toxic and non-toxic texts
  • Concatenate two non-toxic texts
  • Add toxic words from vocabulary
  • Add typos
  • Mask toxic words with "*", "@", "$"

Training procedure

TBA

Downloads last month
5,648
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Spaces using IlyaGusev/rubertconv_toxic_clf 2