|
---
|
|
license: mit
|
|
base_model: cointegrated/rubert-tiny2
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- precision
|
|
- recall
|
|
- f1
|
|
- accuracy
|
|
model-index:
|
|
- name: rubert-tiny2-odonata-ner
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# rubert-tiny2-odonata-ner
|
|
|
|
This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.0048
|
|
- Precision: 0.4157
|
|
- Recall: 0.3274
|
|
- F1: 0.3663
|
|
- Accuracy: 0.9985
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 2e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 10
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
|
| No log | 1.0 | 188 | 0.0144 | 0.0 | 0.0 | 0.0 | 0.9985 |
|
|
| No log | 2.0 | 376 | 0.0133 | 0.0 | 0.0 | 0.0 | 0.9985 |
|
|
| 0.0582 | 3.0 | 564 | 0.0100 | 0.0 | 0.0 | 0.0 | 0.9985 |
|
|
| 0.0582 | 4.0 | 752 | 0.0069 | 0.5 | 0.0177 | 0.0342 | 0.9985 |
|
|
| 0.0582 | 5.0 | 940 | 0.0058 | 0.6667 | 0.0177 | 0.0345 | 0.9985 |
|
|
| 0.0084 | 6.0 | 1128 | 0.0053 | 0.5 | 0.1593 | 0.2416 | 0.9985 |
|
|
| 0.0084 | 7.0 | 1316 | 0.0052 | 0.4487 | 0.3097 | 0.3665 | 0.9985 |
|
|
| 0.0057 | 8.0 | 1504 | 0.0049 | 0.4533 | 0.3009 | 0.3617 | 0.9985 |
|
|
| 0.0057 | 9.0 | 1692 | 0.0048 | 0.4302 | 0.3274 | 0.3719 | 0.9985 |
|
|
| 0.0057 | 10.0 | 1880 | 0.0048 | 0.4157 | 0.3274 | 0.3663 | 0.9985 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.41.2
|
|
- Pytorch 2.3.1+cpu
|
|
- Datasets 2.19.2
|
|
- Tokenizers 0.19.1
|
|
|