|
--- |
|
language: en |
|
tags: |
|
- bigbird |
|
- question-answering |
|
- squad-v2.2 |
|
license: apache-2.0 |
|
datasets: |
|
- squad_v2 |
|
metrics: |
|
- f1 |
|
- exact_match |
|
library_name: adapter-transformers |
|
pipeline_tag: question-answering |
|
--- |
|
|
|
# FredNajjar/bigbird-QA-squad_v2.2 |
|
|
|
Fine-tuned [`google/bigbird-roberta-base`](https://huggingface.co/google/bigbird-roberta-base) model on the SQuAD 2.0 dataset for English extractive question answering. |
|
|
|
## Model Details |
|
- **Language Model**: [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) |
|
- **Language**: English |
|
- **Task**: Extractive Question Answering |
|
- **Data**: [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) |
|
- **Infrastructure**: 1x NVIDIA A100-SXM4-40GB |
|
|
|
## Training Hyperparameters |
|
- Learning Rate: 3e-05 |
|
- Train Batch Size: 16 |
|
- Eval Batch Size: 8 |
|
- Seed: 42 |
|
- Gradient Accumulation Steps: 8 |
|
- Total Train Batch Size: 128 |
|
- Optimizer: Adam (betas=(0.9,0.999), epsilon=1e-08) |
|
- LR Scheduler: Linear with 121 warmup steps |
|
- Number of Epochs: 3 |
|
|
|
## Results on SQuAD 2.0 |
|
- **F1 Score**: 81.39% |
|
- **Exact Match**: 77.82% |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
model_name = "FredNajjar/bigbird-QA-squad_v2.2" |
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
QA_input = { |
|
'question': 'Your question here', |
|
'context': 'Your context here' |
|
} |
|
res = nlp(QA_input) |
|
``` |
|
|
|
- **Framework Versions**: |
|
- Transformers: 4.34.0 |
|
- Pytorch: 2.0.1+cu118 |
|
- Datasets: 2.14.5 |
|
- Tokenizers: 0.14.1 |
|
|
|
## Limitations and Bias |
|
This model inherits limitations and potential biases from the base BigBird model and the SQuAD 2.0 training data. |
|
|
|
## Contact |
|
For inquiries, please reach out via [LinkedIn](https://www.linkedin.com/in/frednajjar/). |
|
|
|
|
|
--- |