See axolotl config
axolotl version: 0.8.0.dev0
base_model: Qwen/Qwen2.5-Math-1.5B-Instruct
trust_remote_code: false
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: qwen_25
datasets:
- path: data/raft_train_iter1_0_1000
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
roles:
user: ["human", "user"]
assistant: ["gpt", "assistant", "ai"]
system: ["system"]
dataset_prepared_path:
val_set_size: 0.0
output_dir: /shared/storage-01/jiarui14/EM-CoT/Online-DPO-R1/outputs/Qwen1.5B-Inst_numina_raft1_orig_eos
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
# wandb_project: huggingface
# wandb_entity: zzzzzaa
# wandb_watch:
# wandb_name: qwen_test
# wandb_log_model:
gradient_accumulation_steps: 64
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: false
tf32: true
gradient_checkpointing: false
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
saves_per_epoch: 1
evals_per_epoch: 0
debug:
weight_decay: 0.01
fsdp:
fsdp_config:
# special_tokens:
# bos_token: "<|im_start|>"
# eos_token: "<|im_end|>"
# pad_token: "<|endoftext|>"
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
shared/storage-01/jiarui14/EM-CoT/Online-DPO-R1/outputs/Qwen1.5B-Inst_numina_raft1_orig_eos
This model is a fine-tuned version of Qwen/Qwen2.5-Math-1.5B-Instruct on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 3.0
Training results
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for FlippyDora/Qwen1.5B-Inst_numina_raft1_orig_eos
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-Math-1.5B
Finetuned
Qwen/Qwen2.5-Math-1.5B-Instruct