indobert-QA-multiple-choice-fine-tune
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.4659
- Accuracy: 0.2588
- F1: 0.1064
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 110 | 2.8199 | 0.2104 | 0.1085 |
No log | 2.0 | 220 | 2.5135 | 0.2588 | 0.1064 |
No log | 3.0 | 330 | 2.4995 | 0.2588 | 0.1064 |
No log | 4.0 | 440 | 2.4478 | 0.2588 | 0.1064 |
2.8208 | 5.0 | 550 | 2.4481 | 0.2588 | 0.1064 |
2.8208 | 6.0 | 660 | 2.4810 | 0.2588 | 0.1064 |
2.8208 | 7.0 | 770 | 2.4651 | 0.2588 | 0.1064 |
2.8208 | 8.0 | 880 | 2.4627 | 0.2588 | 0.1064 |
2.8208 | 9.0 | 990 | 2.4602 | 0.2588 | 0.1064 |
2.4034 | 10.0 | 1100 | 2.4659 | 0.2588 | 0.1064 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The HF Inference API does not support multiple-choice models for transformers library.
Model tree for FaishalbhiteX/indobert-QA-multiple-choice-fine-tune
Base model
indolem/indobert-base-uncased