indobert-QA-multiple-choice-fine-tune

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4659
  • Accuracy: 0.2588
  • F1: 0.1064

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 110 2.8199 0.2104 0.1085
No log 2.0 220 2.5135 0.2588 0.1064
No log 3.0 330 2.4995 0.2588 0.1064
No log 4.0 440 2.4478 0.2588 0.1064
2.8208 5.0 550 2.4481 0.2588 0.1064
2.8208 6.0 660 2.4810 0.2588 0.1064
2.8208 7.0 770 2.4651 0.2588 0.1064
2.8208 8.0 880 2.4627 0.2588 0.1064
2.8208 9.0 990 2.4602 0.2588 0.1064
2.4034 10.0 1100 2.4659 0.2588 0.1064

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
15
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support multiple-choice models for transformers library.

Model tree for FaishalbhiteX/indobert-QA-multiple-choice-fine-tune

Finetuned
(372)
this model