swinv2-tiny-panorama-IQA

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the isiqa-2019-hf dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0211
  • Srocc: 0.0896
  • Lcc: 0.2316

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 10
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Validation Loss Srocc Lcc
No log 0.8571 3 0.1747 0.1087 0.1976
No log 2.0 7 0.0570 0.1042 0.1898
0.1599 2.8571 10 0.0320 0.1126 0.1686
0.1599 4.0 14 0.0511 0.0265 0.1235
0.1599 4.8571 17 0.0274 -0.0004 0.1029
0.0602 6.0 21 0.0375 -0.0406 0.0900
0.0602 6.8571 24 0.0306 -0.0533 0.0830
0.0602 8.0 28 0.0255 -0.0726 0.0714
0.029 8.8571 31 0.0247 -0.0568 0.0734
0.029 10.0 35 0.0293 -0.0429 0.0900
0.029 10.8571 38 0.0259 -0.0317 0.0982
0.0199 12.0 42 0.0238 -0.0073 0.1288
0.0199 12.8571 45 0.0243 0.0216 0.1594
0.0199 14.0 49 0.0259 0.0454 0.1810
0.0161 14.8571 52 0.0224 0.0568 0.1954
0.0161 16.0 56 0.0211 0.0896 0.2316
0.0161 16.8571 59 0.0223 0.1001 0.2544
0.0132 18.0 63 0.0217 0.0981 0.2681
0.0132 18.8571 66 0.0221 0.1155 0.2746
0.0103 20.0 70 0.0228 0.1230 0.2831
0.0103 20.8571 73 0.0245 0.1327 0.2944

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for DiTo97/swinv2-tiny-panorama-IQA

Finetuned
(96)
this model