swinv2-small-panorama-IQA

This model is a fine-tuned version of microsoft/swinv2-small-patch4-window16-256 on the isiqa-2019-hf dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0223
  • Srocc: 0.1291
  • Lcc: 0.1271

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 10
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Validation Loss Srocc Lcc
No log 0.8571 3 0.2948 -0.3890 -0.3824
No log 2.0 7 0.1143 -0.3665 -0.3732
0.1552 2.8571 10 0.0768 -0.3477 -0.3657
0.1552 4.0 14 0.0748 -0.3395 -0.3504
0.1552 4.8571 17 0.0517 -0.3498 -0.3322
0.0657 6.0 21 0.0553 -0.3337 -0.3060
0.0657 6.8571 24 0.0434 -0.2921 -0.2810
0.0657 8.0 28 0.0406 -0.2481 -0.2570
0.0249 8.8571 31 0.0402 -0.2346 -0.2478
0.0249 10.0 35 0.0384 -0.2076 -0.2182
0.0249 10.8571 38 0.0317 -0.1919 -0.1923
0.0215 12.0 42 0.0310 -0.1518 -0.1636
0.0215 12.8571 45 0.0317 -0.1291 -0.1549
0.0215 14.0 49 0.0301 -0.0975 -0.1292
0.0154 14.8571 52 0.0285 -0.0804 -0.1057
0.0154 16.0 56 0.0277 -0.0461 -0.0762
0.0154 16.8571 59 0.0263 -0.0357 -0.0485
0.0128 18.0 63 0.0263 -0.0171 -0.0317
0.0128 18.8571 66 0.0265 -0.0040 -0.0236
0.0113 20.0 70 0.0263 0.0227 -0.0089
0.0113 20.8571 73 0.0256 0.0254 0.0081
0.0113 22.0 77 0.0249 0.0493 0.0233
0.0104 22.8571 80 0.0246 0.0616 0.0330
0.0104 24.0 84 0.0242 0.0691 0.0435
0.0104 24.8571 87 0.0240 0.0796 0.0518
0.0095 26.0 91 0.0238 0.0830 0.0679
0.0095 26.8571 94 0.0235 0.0929 0.0747
0.0095 28.0 98 0.0232 0.1003 0.0862
0.009 28.8571 101 0.0229 0.1050 0.0955
0.009 30.0 105 0.0226 0.1072 0.1052
0.009 30.8571 108 0.0226 0.1177 0.1110
0.0084 32.0 112 0.0225 0.1286 0.1152
0.0084 32.8571 115 0.0224 0.1296 0.1167
0.0084 34.0 119 0.0224 0.1296 0.1185
0.0085 34.8571 122 0.0224 0.1310 0.1200
0.0085 36.0 126 0.0224 0.1263 0.1221
0.0085 36.8571 129 0.0224 0.1249 0.1233
0.0082 38.0 133 0.0223 0.1272 0.1247
0.0082 38.8571 136 0.0223 0.1272 0.1255
0.008 40.0 140 0.0223 0.1291 0.1265
0.008 40.8571 143 0.0223 0.1291 0.1269
0.008 42.0 147 0.0223 0.1291 0.1271
0.0078 42.8571 150 0.0223 0.1291 0.1271

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
49M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for DiTo97/swinv2-small-panorama-IQA

Finetuned
(3)
this model