|
--- |
|
base_model: google/electra-large-discriminator |
|
datasets: |
|
- PiC/phrase_similarity |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- dot_accuracy |
|
- dot_accuracy_threshold |
|
- dot_f1 |
|
- dot_f1_threshold |
|
- dot_precision |
|
- dot_recall |
|
- dot_ap |
|
- manhattan_accuracy |
|
- manhattan_accuracy_threshold |
|
- manhattan_f1 |
|
- manhattan_f1_threshold |
|
- manhattan_precision |
|
- manhattan_recall |
|
- manhattan_ap |
|
- euclidean_accuracy |
|
- euclidean_accuracy_threshold |
|
- euclidean_f1 |
|
- euclidean_f1_threshold |
|
- euclidean_precision |
|
- euclidean_recall |
|
- euclidean_ap |
|
- max_accuracy |
|
- max_accuracy_threshold |
|
- max_f1 |
|
- max_f1_threshold |
|
- max_precision |
|
- max_recall |
|
- max_ap |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:7004 |
|
- loss:SoftmaxLoss |
|
widget: |
|
- source_sentence: Google SEO expert Matt Cutts had a similar experience, of the eight |
|
magazines and newspapers Cutts tried to order, he received zero. |
|
sentences: |
|
- He dissolved the services of her guards and her court attendants and seized an |
|
expansive reach of properties belonging to her. |
|
- Google SEO expert Matt Cutts had a comparable occurrence, of the eight magazines |
|
and newspapers Cutts tried to order, he received zero. |
|
- bill's newest solo play, "all over the map", premiered off broadway in april 2016, |
|
produced by all for an individual cinema. |
|
- source_sentence: Shula said that Namath "beat our blitz" with his fast release, |
|
which let him quickly dump the football off to a receiver. |
|
sentences: |
|
- Shula said that Namath "beat our blitz" with his quick throw, which let him quickly |
|
dump the football off to a receiver. |
|
- it elects a single component of parliament (mp) by the first past the post system |
|
of election. |
|
- Matt Groening said that West was one of the most widely known group to ever come |
|
to the studio. |
|
- source_sentence: When Angel calls out her name, Cordelia suddenly appears from the |
|
opposite side of the room saying, "Yep, that chick's in rough shape. |
|
sentences: |
|
- The ruined row of text, part of the Florida East Coast Railway, was repaired by |
|
2014 renewing freight train access to the port. |
|
- When Angel calls out her name, Cordelia suddenly appears from the opposite side |
|
of the room saying, "Yep, that chick's in approximate form. |
|
- Chaplin's films introduced a moderated kind of comedy than the typical Keystone |
|
farce, and he developed a large fan base. |
|
- source_sentence: The following table shows the distances traversed by National Route |
|
11 in each different department, showing cities and towns that it passes by (or |
|
near). |
|
sentences: |
|
- The following table shows the distances traversed by National Route 11 in each |
|
separate city authority, showing cities and towns that it passes by (or near). |
|
- Similarly, indigenous communities and leaders practice as the main rule of law |
|
on local native lands and reserves. |
|
- later, sylvan mixed gary numan's albums "replicas" (with numan's previous band |
|
tubeway army) and "the quest for instant gratification". |
|
- source_sentence: She wants to write about Keima but suffers a major case of writer's |
|
block. |
|
sentences: |
|
- In some countries, new extremist parties on the extreme opposite of left of the |
|
political spectrum arose, motivated through issues of immigration, multiculturalism |
|
and integration. |
|
- specific medical status of movement and the general condition of movement both |
|
are conditions under which contradictions can move. |
|
- She wants to write about Keima but suffers a huge occurrence of writer's block. |
|
model-index: |
|
- name: SentenceTransformer based on google/electra-large-discriminator |
|
results: |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: quora duplicates dev |
|
type: quora-duplicates-dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.748 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.9737387895584106 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.7604846225535881 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.9574624300003052 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.7120418848167539 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.816 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.786909093121924 |
|
name: Cosine Ap |
|
- type: dot_accuracy |
|
value: 0.667 |
|
name: Dot Accuracy |
|
- type: dot_accuracy_threshold |
|
value: 275.4551696777344 |
|
name: Dot Accuracy Threshold |
|
- type: dot_f1 |
|
value: 0.733229329173167 |
|
name: Dot F1 |
|
- type: dot_f1_threshold |
|
value: 266.14727783203125 |
|
name: Dot F1 Threshold |
|
- type: dot_precision |
|
value: 0.6010230179028133 |
|
name: Dot Precision |
|
- type: dot_recall |
|
value: 0.94 |
|
name: Dot Recall |
|
- type: dot_ap |
|
value: 0.5935392159238977 |
|
name: Dot Ap |
|
- type: manhattan_accuracy |
|
value: 0.746 |
|
name: Manhattan Accuracy |
|
- type: manhattan_accuracy_threshold |
|
value: 87.73857116699219 |
|
name: Manhattan Accuracy Threshold |
|
- type: manhattan_f1 |
|
value: 0.7614678899082568 |
|
name: Manhattan F1 |
|
- type: manhattan_f1_threshold |
|
value: 131.43374633789062 |
|
name: Manhattan F1 Threshold |
|
- type: manhattan_precision |
|
value: 0.7033898305084746 |
|
name: Manhattan Precision |
|
- type: manhattan_recall |
|
value: 0.83 |
|
name: Manhattan Recall |
|
- type: manhattan_ap |
|
value: 0.7904964653279406 |
|
name: Manhattan Ap |
|
- type: euclidean_accuracy |
|
value: 0.747 |
|
name: Euclidean Accuracy |
|
- type: euclidean_accuracy_threshold |
|
value: 4.5833892822265625 |
|
name: Euclidean Accuracy Threshold |
|
- type: euclidean_f1 |
|
value: 0.7610121836925962 |
|
name: Euclidean F1 |
|
- type: euclidean_f1_threshold |
|
value: 5.5540361404418945 |
|
name: Euclidean F1 Threshold |
|
- type: euclidean_precision |
|
value: 0.7160493827160493 |
|
name: Euclidean Precision |
|
- type: euclidean_recall |
|
value: 0.812 |
|
name: Euclidean Recall |
|
- type: euclidean_ap |
|
value: 0.789806008641207 |
|
name: Euclidean Ap |
|
- type: max_accuracy |
|
value: 0.748 |
|
name: Max Accuracy |
|
- type: max_accuracy_threshold |
|
value: 275.4551696777344 |
|
name: Max Accuracy Threshold |
|
- type: max_f1 |
|
value: 0.7614678899082568 |
|
name: Max F1 |
|
- type: max_f1_threshold |
|
value: 266.14727783203125 |
|
name: Max F1 Threshold |
|
- type: max_precision |
|
value: 0.7160493827160493 |
|
name: Max Precision |
|
- type: max_recall |
|
value: 0.94 |
|
name: Max Recall |
|
- type: max_ap |
|
value: 0.7904964653279406 |
|
name: Max Ap |
|
--- |
|
|
|
# SentenceTransformer based on google/electra-large-discriminator |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/electra-large-discriminator](https://huggingface.co/google/electra-large-discriminator) on the [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [google/electra-large-discriminator](https://huggingface.co/google/electra-large-discriminator) <!-- at revision c13c3df7efadc2162f42588bd28eb4e187d602a5 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ElectraModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Deehan1866/Electra") |
|
# Run inference |
|
sentences = [ |
|
"She wants to write about Keima but suffers a major case of writer's block.", |
|
"She wants to write about Keima but suffers a huge occurrence of writer's block.", |
|
'specific medical status of movement and the general condition of movement both are conditions under which contradictions can move.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Binary Classification |
|
* Dataset: `quora-duplicates-dev` |
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:-----------------------------|:-----------| |
|
| cosine_accuracy | 0.748 | |
|
| cosine_accuracy_threshold | 0.9737 | |
|
| cosine_f1 | 0.7605 | |
|
| cosine_f1_threshold | 0.9575 | |
|
| cosine_precision | 0.712 | |
|
| cosine_recall | 0.816 | |
|
| cosine_ap | 0.7869 | |
|
| dot_accuracy | 0.667 | |
|
| dot_accuracy_threshold | 275.4552 | |
|
| dot_f1 | 0.7332 | |
|
| dot_f1_threshold | 266.1473 | |
|
| dot_precision | 0.601 | |
|
| dot_recall | 0.94 | |
|
| dot_ap | 0.5935 | |
|
| manhattan_accuracy | 0.746 | |
|
| manhattan_accuracy_threshold | 87.7386 | |
|
| manhattan_f1 | 0.7615 | |
|
| manhattan_f1_threshold | 131.4337 | |
|
| manhattan_precision | 0.7034 | |
|
| manhattan_recall | 0.83 | |
|
| manhattan_ap | 0.7905 | |
|
| euclidean_accuracy | 0.747 | |
|
| euclidean_accuracy_threshold | 4.5834 | |
|
| euclidean_f1 | 0.761 | |
|
| euclidean_f1_threshold | 5.554 | |
|
| euclidean_precision | 0.716 | |
|
| euclidean_recall | 0.812 | |
|
| euclidean_ap | 0.7898 | |
|
| max_accuracy | 0.748 | |
|
| max_accuracy_threshold | 275.4552 | |
|
| max_f1 | 0.7615 | |
|
| max_f1_threshold | 266.1473 | |
|
| max_precision | 0.716 | |
|
| max_recall | 0.94 | |
|
| **max_ap** | **0.7905** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### PiC/phrase_similarity |
|
|
|
* Dataset: [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity) at [fc67ce7](https://huggingface.co/datasets/PiC/phrase_similarity/tree/fc67ce7c1e69e360e42dc6f31ddf97bb32f1923d) |
|
* Size: 7,004 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 12 tokens</li><li>mean: 26.35 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 26.89 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>0: ~48.80%</li><li>1: ~51.20%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>newly formed camp is released from the membrane and diffuses across the intracellular space where it serves to activate pka.</code> | <code>recently made encampment is released from the membrane and diffuses across the intracellular space where it serves to activate pka.</code> | <code>0</code> | |
|
| <code>According to one data, in 1910, on others – in 1915, the mansion became Natalya Dmitriyevna Shchuchkina's property.</code> | <code>According to a particular statistic, in 1910, on others – in 1915, the mansion became Natalya Dmitriyevna Shchuchkina's property.</code> | <code>1</code> | |
|
| <code>Note that Fact 1 does not assume any particular structure on the set formula_65.</code> | <code>Note that Fact 1 does not assume any specific edifice on the set formula_65.</code> | <code>0</code> | |
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) |
|
|
|
### Evaluation Dataset |
|
|
|
#### PiC/phrase_similarity |
|
|
|
* Dataset: [PiC/phrase_similarity](https://huggingface.co/datasets/PiC/phrase_similarity) at [fc67ce7](https://huggingface.co/datasets/PiC/phrase_similarity/tree/fc67ce7c1e69e360e42dc6f31ddf97bb32f1923d) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 9 tokens</li><li>mean: 26.21 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 26.8 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>0: ~50.00%</li><li>1: ~50.00%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:----------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>after theo's apparent death, she decides to leave first colony and ends up traveling with the apostles.</code> | <code>after theo's apparent death, she decides to leave original settlement and ends up traveling with the apostles.</code> | <code>0</code> | |
|
| <code>The guard assigned to Vivian leaves her to prevent the robbery, allowing her to connect to the bank's network.</code> | <code>The guard assigned to Vivian leaves her to prevent the robbery, allowing her to connect to the bank's locations.</code> | <code>0</code> | |
|
| <code>Two days later Louis XVI banished Necker by a "lettre de cachet" for his very public exchange of pamphlets.</code> | <code>Two days later Louis XVI banished Necker by a "lettre de cachet" for his very free forum of pamphlets.</code> | <code>0</code> | |
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 5 |
|
- `warmup_ratio`: 0.1 |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | quora-duplicates-dev_max_ap | |
|
|:----------:|:-------:|:-------------:|:----------:|:---------------------------:| |
|
| 0 | 0 | - | - | 0.6721 | |
|
| 0.2283 | 100 | - | 0.6805 | 0.6847 | |
|
| **0.4566** | **200** | **-** | **0.5313** | **0.7905** | |
|
| 0.6849 | 300 | - | 0.5383 | 0.7838 | |
|
| 0.9132 | 400 | - | 0.6442 | 0.7585 | |
|
| 1.1416 | 500 | 0.5761 | 0.5742 | 0.7843 | |
|
| 1.3699 | 600 | - | 0.5606 | 0.7558 | |
|
| 1.5982 | 700 | - | 0.5716 | 0.7772 | |
|
| 1.8265 | 800 | - | 0.5573 | 0.7619 | |
|
| 2.0548 | 900 | - | 0.6951 | 0.7760 | |
|
| 2.2831 | 1000 | 0.3712 | 0.7678 | 0.7753 | |
|
| 2.5114 | 1100 | - | 0.7712 | 0.7915 | |
|
| 2.7397 | 1200 | - | 0.8120 | 0.7914 | |
|
| 2.9680 | 1300 | - | 0.8045 | 0.7789 | |
|
| 3.1963 | 1400 | - | 0.9936 | 0.7821 | |
|
| 3.4247 | 1500 | 0.1942 | 1.0883 | 0.7679 | |
|
| 3.6530 | 1600 | - | 0.9814 | 0.7566 | |
|
| 3.8813 | 1700 | - | 1.0897 | 0.7830 | |
|
| 4.1096 | 1800 | - | 1.0764 | 0.7729 | |
|
| 4.3379 | 1900 | - | 1.1209 | 0.7802 | |
|
| 4.5662 | 2000 | 0.1175 | 1.1522 | 0.7804 | |
|
| 4.7945 | 2100 | - | 1.1545 | 0.7807 | |
|
| 5.0 | 2190 | - | - | 0.7905 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.10 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.3 |
|
- PyTorch: 2.2.1+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers and SoftmaxLoss |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |