final_model
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the task arithmetic merge method using CultriX/SeQwence-14B as a base.
Models Merged
The following models were included in the merge:
- CultriX/Qwen2.5-14B-Wernicke
- CultriX/Qwestion-14B
- CultriX/Qwen2.5-14B-MegaMerge-pt2
- CultriX/SeQwence-14Bv1
Configuration
The following YAML configuration was used to produce this model:
base_model: CultriX/SeQwence-14B
dtype: bfloat16
merge_method: task_arithmetic
parameters:
int8_mask: 1.0
normalize: 1.0
slices:
- sources:
- layer_range: [0, 8]
model: CultriX/Qwen2.5-14B-MegaMerge-pt2
parameters:
weight: 0.6973896126881656
- layer_range: [0, 8]
model: CultriX/SeQwence-14B
parameters:
weight: 0.25536014932096784
- layer_range: [0, 8]
model: CultriX/Qwen2.5-14B-Wernicke
parameters:
weight: 0.024099354110818955
- layer_range: [0, 8]
model: CultriX/SeQwence-14Bv1
parameters:
weight: 0.062255273414504236
- layer_range: [0, 8]
model: CultriX/Qwestion-14B
parameters:
weight: 0.19842743525221093
- sources:
- layer_range: [8, 16]
model: CultriX/Qwen2.5-14B-MegaMerge-pt2
parameters:
weight: 0.16541251205918317
- layer_range: [8, 16]
model: CultriX/SeQwence-14B
parameters:
weight: -0.11758222851964711
- layer_range: [8, 16]
model: CultriX/Qwen2.5-14B-Wernicke
parameters:
weight: 0.026110542928974606
- layer_range: [8, 16]
model: CultriX/SeQwence-14Bv1
parameters:
weight: 0.17351317150552764
- layer_range: [8, 16]
model: CultriX/Qwestion-14B
parameters:
weight: 0.2189587409844403
- sources:
- layer_range: [16, 24]
model: CultriX/Qwen2.5-14B-MegaMerge-pt2
parameters:
weight: -0.18585407879293625
- layer_range: [16, 24]
model: CultriX/SeQwence-14B
parameters:
weight: 0.28979432739572986
- layer_range: [16, 24]
model: CultriX/Qwen2.5-14B-Wernicke
parameters:
weight: 0.13321246350564858
- layer_range: [16, 24]
model: CultriX/SeQwence-14Bv1
parameters:
weight: -0.07525163437282778
- layer_range: [16, 24]
model: CultriX/Qwestion-14B
parameters:
weight: 0.09939146833918691
- sources:
- layer_range: [24, 32]
model: CultriX/Qwen2.5-14B-MegaMerge-pt2
parameters:
weight: 0.20535780306129478
- layer_range: [24, 32]
model: CultriX/SeQwence-14B
parameters:
weight: 0.23689447247624298
- layer_range: [24, 32]
model: CultriX/Qwen2.5-14B-Wernicke
parameters:
weight: 0.08595523000213551
- layer_range: [24, 32]
model: CultriX/SeQwence-14Bv1
parameters:
weight: 0.32843658569448686
- layer_range: [24, 32]
model: CultriX/Qwestion-14B
parameters:
weight: 0.5660243716148874
- sources:
- layer_range: [32, 40]
model: CultriX/Qwen2.5-14B-MegaMerge-pt2
parameters:
weight: 0.4782495451944288
- layer_range: [32, 40]
model: CultriX/SeQwence-14B
parameters:
weight: 0.04636896831126347
- layer_range: [32, 40]
model: CultriX/Qwen2.5-14B-Wernicke
parameters:
weight: -0.20847472991447114
- layer_range: [32, 40]
model: CultriX/SeQwence-14Bv1
parameters:
weight: -0.13710751148654265
- layer_range: [32, 40]
model: CultriX/Qwestion-14B
parameters:
weight: 0.04879517930226218
- sources:
- layer_range: [40, 48]
model: CultriX/Qwen2.5-14B-MegaMerge-pt2
parameters:
weight: 0.24947640644399857
- layer_range: [40, 48]
model: CultriX/SeQwence-14B
parameters:
weight: 0.27995726695330514
- layer_range: [40, 48]
model: CultriX/Qwen2.5-14B-Wernicke
parameters:
weight: 0.29376471224311385
- layer_range: [40, 48]
model: CultriX/SeQwence-14Bv1
parameters:
weight: 0.11668812856147562
- layer_range: [40, 48]
model: CultriX/Qwestion-14B
parameters:
weight: 0.117720095241547
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 34.41 |
IFEval (0-Shot) | 57.86 |
BBH (3-Shot) | 46.53 |
MATH Lvl 5 (4-Shot) | 21.60 |
GPQA (0-shot) | 14.77 |
MuSR (0-shot) | 17.55 |
MMLU-PRO (5-shot) | 48.16 |
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for CultriX/SeQwence-14Bv2
Merge model
this model
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard57.860
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard46.530
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard21.600
- acc_norm on GPQA (0-shot)Open LLM Leaderboard14.770
- acc_norm on MuSR (0-shot)Open LLM Leaderboard17.550
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard48.160