metadata
library_name: transformers
tags:
- mergekit
- merge
base_model:
- allknowingroger/Qwen2.5-slerp-14B
- tanliboy/lambda-qwen2.5-14b-dpo-test
- allknowingroger/Qwenslerp3-14B
- EVA-UNIT-01/EVA-Qwen2.5-14B-v0.0
- v000000/Qwen2.5-14B-Gutenberg-1e-Delta
- rombodawg/Rombos-LLM-V2.6-Qwen-14b
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-14B
- v000000/Qwen2.5-Lumen-14B
- allknowingroger/Qwenslerp2-14B
model-index:
- name: Qwen2.5-14B-MergeStock
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 56.85
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MergeStock
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 51.01
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MergeStock
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 27.34
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MergeStock
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 16.44
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MergeStock
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 17.85
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MergeStock
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 48.84
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwen2.5-14B-MergeStock
name: Open LLM Leaderboard
license: apache-2.0
language:
- en
pipeline_tag: text-generation
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the Model Stock merge method using Qwen/Qwen2.5-14B as a base.
Models Merged
The following models were included in the merge:
- allknowingroger/Qwen2.5-slerp-14B
- tanliboy/lambda-qwen2.5-14b-dpo-test
- allknowingroger/Qwenslerp3-14B
- EVA-UNIT-01/EVA-Qwen2.5-14B-v0.0
- v000000/Qwen2.5-14B-Gutenberg-1e-Delta
- rombodawg/Rombos-LLM-V2.6-Qwen-14b
- Qwen/Qwen2.5-14B-Instruct
- v000000/Qwen2.5-Lumen-14B
- allknowingroger/Qwenslerp2-14B
Configuration
The following YAML configuration was used to produce this model:
models:
- model: Qwen/Qwen2.5-14B-Instruct
- model: Qwen/Qwen2.5-14B
- model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.0
- model: rombodawg/Rombos-LLM-V2.6-Qwen-14b
- model: allknowingroger/Qwenslerp2-14B
- model: allknowingroger/Qwenslerp3-14B
- model: allknowingroger/Qwen2.5-slerp-14B
- model: v000000/Qwen2.5-Lumen-14B
- model: v000000/Qwen2.5-14B-Gutenberg-1e-Delta
- model: tanliboy/lambda-qwen2.5-14b-dpo-test
base_model: Qwen/Qwen2.5-14B
merge_method: model_stock
parameters:
normalize: true
dtype: bfloat16
tokenizer_source: Qwen/Qwen2.5-14B-Instruct
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 36.39 |
IFEval (0-Shot) | 56.85 |
BBH (3-Shot) | 51.01 |
MATH Lvl 5 (4-Shot) | 27.34 |
GPQA (0-shot) | 16.44 |
MuSR (0-shot) | 17.85 |
MMLU-PRO (5-shot) | 48.84 |