nomic 1.5 base Financial Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CatSchroedinger/nomic-v1.5-financial-matryoshka")
# Run inference
sentences = [
'What is the maximum duration for patent term restoration for pharmaceutical products in the U.S.?',
"Patent term restoration for a single patent for a pharmaceutical product is provided to U.S. patent holders to compensate for a portion of the time invested in clinical trials and the U.S. Food and Drug Administration (FDA). There is a five-year cap on any restoration, and no patent's expiration date may be extended beyond 14 years from FDA approval.",
'Using AI technologies, our Tax Advisor offering leverages information generated from our ProConnect Tax Online and Lacerte offerings to enable year-round tax planning services and communicate tax savings strategies to clients.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7286 | 0.7143 | 0.7014 | 0.7071 | 0.67 |
cosine_accuracy@3 | 0.8514 | 0.8414 | 0.8386 | 0.8343 | 0.8086 |
cosine_accuracy@5 | 0.8886 | 0.8857 | 0.88 | 0.8743 | 0.8514 |
cosine_accuracy@10 | 0.92 | 0.9214 | 0.9243 | 0.9243 | 0.8986 |
cosine_precision@1 | 0.7286 | 0.7143 | 0.7014 | 0.7071 | 0.67 |
cosine_precision@3 | 0.2838 | 0.2805 | 0.2795 | 0.2781 | 0.2695 |
cosine_precision@5 | 0.1777 | 0.1771 | 0.176 | 0.1749 | 0.1703 |
cosine_precision@10 | 0.092 | 0.0921 | 0.0924 | 0.0924 | 0.0899 |
cosine_recall@1 | 0.7286 | 0.7143 | 0.7014 | 0.7071 | 0.67 |
cosine_recall@3 | 0.8514 | 0.8414 | 0.8386 | 0.8343 | 0.8086 |
cosine_recall@5 | 0.8886 | 0.8857 | 0.88 | 0.8743 | 0.8514 |
cosine_recall@10 | 0.92 | 0.9214 | 0.9243 | 0.9243 | 0.8986 |
cosine_ndcg@10 | 0.8269 | 0.82 | 0.8144 | 0.8165 | 0.7842 |
cosine_mrr@10 | 0.7968 | 0.7873 | 0.7791 | 0.7822 | 0.7478 |
cosine_map@100 | 0.8006 | 0.791 | 0.7827 | 0.7856 | 0.7519 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 9 tokens
- mean: 20.49 tokens
- max: 51 tokens
- min: 6 tokens
- mean: 45.72 tokens
- max: 687 tokens
- Samples:
anchor positive What limitations are associated with using non-GAAP financial measures such as contribution margin and adjusted income from operations?
Further, these metrics have certain limitations, as they do not include the impact of certain expenses that are reflected in our consolidated statements of operations.
What type of firm is PricewaterhouseCoopers LLP as mentioned in the financial statements?
PricewaterhouseCoopers LLP, mentioned as the independent registered public accounting firm with PCAOB ID 238, prepared the report on the consolidated financial statements.
What pages contain the financial Statements and Supplementary Data in IBM's 2023 Annual Report?
The Financial Statements and Supplementary Data for IBM's 2023 Annual Report are found on pages 44 through 121.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 11.5729 | - | - | - | - | - |
1.0 | 13 | - | 0.7995 | 0.7976 | 0.7929 | 0.7889 | 0.7646 |
1.5685 | 20 | 3.4999 | - | - | - | - | - |
2.0 | 26 | - | 0.8207 | 0.8189 | 0.8099 | 0.8090 | 0.7825 |
2.3249 | 30 | 2.8578 | - | - | - | - | - |
3.0 | 39 | - | 0.8267 | 0.8218 | 0.8151 | 0.8168 | 0.7826 |
3.0812 | 40 | 2.0904 | - | - | - | - | - |
3.7310 | 48 | - | 0.8269 | 0.8200 | 0.8144 | 0.8165 | 0.7842 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 2.19.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for CatSchroedinger/nomic-v1.5-financial-matryoshka
Base model
nomic-ai/nomic-embed-text-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.729
- Cosine Accuracy@3 on dim 768self-reported0.851
- Cosine Accuracy@5 on dim 768self-reported0.889
- Cosine Accuracy@10 on dim 768self-reported0.920
- Cosine Precision@1 on dim 768self-reported0.729
- Cosine Precision@3 on dim 768self-reported0.284
- Cosine Precision@5 on dim 768self-reported0.178
- Cosine Precision@10 on dim 768self-reported0.092
- Cosine Recall@1 on dim 768self-reported0.729
- Cosine Recall@3 on dim 768self-reported0.851