smol_llama-220M-GQA-fineweb-edu-10BT
This model is a continously pretrained version of BEE-spoke-data/smol_llama-220M-GQA on the 10BT-sample subset of HuggingFaceFW/fineweb-edu
.
It achieves the following results on the evaluation set:
- Loss: 2.7416
- Accuracy: 0.4560
- Num Input Tokens Seen: 10810818560
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 80085
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen |
---|---|---|---|---|---|
2.8567 | 0.0145 | 300 | 2.8291 | 0.4450 | 157286400 |
2.8517 | 0.0291 | 600 | 2.8153 | 0.4465 | 314572800 |
2.8224 | 0.0436 | 900 | 2.8025 | 0.4481 | 471859200 |
2.8178 | 0.0582 | 1200 | 2.7912 | 0.4495 | 629145600 |
2.8001 | 0.0727 | 1500 | 2.7832 | 0.4505 | 786432000 |
2.8045 | 0.0873 | 1800 | 2.7772 | 0.4512 | 943718400 |
2.8019 | 0.1018 | 2100 | 2.7729 | 0.4516 | 1101004800 |
2.7995 | 0.1164 | 2400 | 2.7691 | 0.4522 | 1258291200 |
2.8006 | 0.1309 | 2700 | 2.7657 | 0.4526 | 1415577600 |
2.7886 | 0.1455 | 3000 | 2.7631 | 0.4528 | 1572864000 |
2.7907 | 0.1600 | 3300 | 2.7606 | 0.4532 | 1730150400 |
2.7907 | 0.1746 | 3600 | 2.7588 | 0.4536 | 1887436800 |
2.7788 | 0.1891 | 3900 | 2.7569 | 0.4537 | 2044723200 |
2.7942 | 0.2037 | 4200 | 2.7552 | 0.4540 | 2202009600 |
2.793 | 0.2182 | 4500 | 2.7538 | 0.4543 | 2359296000 |
2.7958 | 0.2328 | 4800 | 2.7526 | 0.4544 | 2516582400 |
2.78 | 0.2473 | 5100 | 2.7515 | 0.4547 | 2673868800 |
2.7937 | 0.2619 | 5400 | 2.7506 | 0.4548 | 2831155200 |
2.7717 | 0.2764 | 5700 | 2.7498 | 0.4548 | 2988441600 |
2.7832 | 0.2910 | 6000 | 2.7490 | 0.4548 | 3145728000 |
2.768 | 0.3055 | 6300 | 2.7482 | 0.4550 | 3303014400 |
2.7653 | 0.3201 | 6600 | 2.7476 | 0.4551 | 3460300800 |
2.7843 | 0.3346 | 6900 | 2.7470 | 0.4551 | 3617587200 |
2.7765 | 0.3492 | 7200 | 2.7464 | 0.4550 | 3774873600 |
2.7778 | 0.3637 | 7500 | 2.7460 | 0.4552 | 3932160000 |
2.7655 | 0.3783 | 7800 | 2.7455 | 0.4553 | 4089446400 |
2.7943 | 0.3928 | 8100 | 2.7449 | 0.4554 | 4246732800 |
2.7715 | 0.4074 | 8400 | 2.7447 | 0.4552 | 4404019200 |
2.7828 | 0.4219 | 8700 | 2.7443 | 0.4554 | 4561305600 |
2.7883 | 0.4365 | 9000 | 2.7440 | 0.4556 | 4718592000 |
2.7627 | 0.4510 | 9300 | 2.7437 | 0.4556 | 4875878400 |
2.7841 | 0.4656 | 9600 | 2.7435 | 0.4557 | 5033164800 |
2.7734 | 0.4801 | 9900 | 2.7433 | 0.4557 | 5190451200 |
2.7829 | 0.4947 | 10200 | 2.7430 | 0.4557 | 5347737600 |
2.781 | 0.5092 | 10500 | 2.7429 | 0.4557 | 5505024000 |
2.7757 | 0.5238 | 10800 | 2.7428 | 0.4557 | 5662310400 |
2.779 | 0.5383 | 11100 | 2.7426 | 0.4559 | 5819596800 |
2.7771 | 0.5529 | 11400 | 2.7425 | 0.4559 | 5976883200 |
2.7828 | 0.5674 | 11700 | 2.7424 | 0.4560 | 6134169600 |
2.7814 | 0.5820 | 12000 | 2.7423 | 0.4558 | 6291456000 |
2.7735 | 0.5965 | 12300 | 2.7422 | 0.4559 | 6448742400 |
2.7848 | 0.6111 | 12600 | 2.7420 | 0.4559 | 6606028800 |
2.7748 | 0.6256 | 12900 | 2.7420 | 0.4559 | 6763315200 |
2.7697 | 0.6402 | 13200 | 2.7419 | 0.4560 | 6920601600 |
2.7689 | 0.6547 | 13500 | 2.7419 | 0.4560 | 7077888000 |
2.7747 | 0.6692 | 13800 | 2.7419 | 0.4559 | 7235174400 |
2.786 | 0.6838 | 14100 | 2.7418 | 0.4561 | 7392460800 |
2.7801 | 0.6983 | 14400 | 2.7417 | 0.4560 | 7549747200 |
2.7658 | 0.7129 | 14700 | 2.7417 | 0.4561 | 7707033600 |
2.7717 | 0.7274 | 15000 | 2.7417 | 0.4560 | 7864320000 |
2.7717 | 0.7420 | 15300 | 2.7417 | 0.4560 | 8021606400 |
2.777 | 0.7565 | 15600 | 2.7417 | 0.4559 | 8178892800 |
2.7793 | 0.7711 | 15900 | 2.7416 | 0.4560 | 8336179200 |
2.7718 | 0.7856 | 16200 | 2.7416 | 0.4559 | 8493465600 |
2.7757 | 0.8002 | 16500 | 2.7416 | 0.4560 | 8650752000 |
2.7763 | 0.8147 | 16800 | 2.7416 | 0.4559 | 8808038400 |
2.7581 | 0.8293 | 17100 | 2.7416 | 0.4559 | 8965324800 |
2.7719 | 0.8438 | 17400 | 2.7416 | 0.4560 | 9122611200 |
2.7609 | 0.8584 | 17700 | 2.7416 | 0.4560 | 9279897600 |
2.7753 | 0.8729 | 18000 | 2.7416 | 0.4559 | 9437184000 |
2.7674 | 0.8875 | 18300 | 2.7415 | 0.4560 | 9594470400 |
2.7601 | 0.9020 | 18600 | 2.7416 | 0.4560 | 9751756800 |
2.7823 | 0.9166 | 18900 | 2.7416 | 0.4560 | 9909043200 |
2.7767 | 0.9311 | 19200 | 2.7416 | 0.4560 | 10066329600 |
2.7759 | 0.9457 | 19500 | 2.7416 | 0.4560 | 10223616000 |
2.7722 | 0.9602 | 19800 | 2.7415 | 0.4560 | 10380902400 |
2.7764 | 0.9748 | 20100 | 2.7416 | 0.4560 | 10538188800 |
2.7724 | 0.9893 | 20400 | 2.7416 | 0.4559 | 10695475200 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.1+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 6.52 |
IFEval (0-Shot) | 19.88 |
BBH (3-Shot) | 2.31 |
MATH Lvl 5 (4-Shot) | 0.00 |
GPQA (0-shot) | 1.23 |
MuSR (0-shot) | 14.26 |
MMLU-PRO (5-shot) | 1.41 |
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
Dataset used to train BEE-spoke-data/smol_llama-220M-GQA-fineweb_edu
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard19.880
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard2.310
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard0.000
- acc_norm on GPQA (0-shot)Open LLM Leaderboard1.230
- acc_norm on MuSR (0-shot)Open LLM Leaderboard14.260
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard1.410