wav2vec2-common_voice-it_en

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the COMMON_VOICE - IT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0432
  • Wer: 0.0322

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 7
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 14
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4885 0.7 1200 0.2958 0.2618
0.2986 1.4 2400 0.1802 0.1629
0.2515 2.1 3600 0.1379 0.1317
0.2013 2.8 4800 0.1208 0.1178
0.1651 3.5 6000 0.1110 0.1159
0.1559 4.2 7200 0.0923 0.0948
0.1337 4.9 8400 0.0928 0.0931
0.1162 5.6 9600 0.0753 0.0782
0.1164 6.3 10800 0.0700 0.0714
0.1057 7.0 12000 0.0630 0.0656
0.0904 7.7 13200 0.0619 0.0624
0.0807 8.4 14400 0.0609 0.0566
0.0759 9.1 15600 0.0514 0.0490
0.0657 9.8 16800 0.0504 0.0470
0.0556 10.5 18000 0.0511 0.0431
0.0534 11.2 19200 0.0484 0.0408
0.0498 11.9 20400 0.0436 0.0383
0.0441 12.6 21600 0.0458 0.0365
0.0398 13.3 22800 0.0471 0.0354
0.0379 14.0 24000 0.0402 0.0327
0.0333 14.7 25200 0.0438 0.0326

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.