File size: 16,699 Bytes
9757a09 c863858 9757a09 bd35730 9757a09 596bb8e 9757a09 2d1f512 c863858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
---
license: mit
base_model:
- OpenGVLab/InternVL2-4B
- nvidia/RADIO
pipeline_tag: image-text-to-text
library_name: transformers
---
# CoLVA
[\[๐ GitHub\]](https://github.com/zhouyiks/CoLVA) [\[๐ Paper\]](https://arxiv.org/abs/2501.04670)
## Introduction
As an initial effort to address the systematic shortcomings of matching capabilities in recent multimodal LLMs (MLLMs),
we release CoLVA, a novel contrastive MLLM with two novel technical designs:
fine-grained vision expert with object-level contrastive learning and instruction augmentation strategy.
This repository holds the model weights and inference codes of CoLVA that is built on InternVL2-4B.
## Quik Start
We provide an example code to run `CoLVA` using `transformers`.
> Please use transformers>=4.47.0 to ensure the model works normally.
### Model Loading
#### 16-bit (bf16 / fp16)
```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "zhouyik/colva_internvl2_4b"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
```
### Inference with Transformers
```python
import os
import json
import cv2
import random
from typing import List
import pycocotools.mask as mask_util
import numpy as np
import torch
from transformers import AutoModel, AutoTokenizer
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
import torch.nn.functional as F
from transformers import CLIPImageProcessor
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
VPT_CONTEXT_TOKEN = '<VPT_CONTEXT>'
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=6, upscale=False):
if isinstance(image_file, str):
image = Image.open(image_file).convert('RGB')
else:
image = image_file.convert('RGB')
if upscale:
image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR)
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def polygons_to_bitmask(polygons: List[np.ndarray], height: int, width: int) -> np.ndarray:
"""
Args:
polygons (list[ndarray]): each array has shape (Nx2,)
height, width (int)
Returns:
ndarray: a bool mask of shape (height, width)
"""
if len(polygons) == 0:
# COCOAPI does not support empty polygons
return np.zeros((height, width)).astype(bool)
rles = mask_util.frPyObjects(polygons, height, width)
masks = mask_util.decode(rles)
reduced = np.add.reduce(masks, axis=2)
m = np.where(reduced>=2, 0, reduced)
# rle = mask_util.merge(rles)
return m.astype(bool)
from distinctipy import distinctipy
def contour_rendering(image, masks, mask_ids=None):
colors = distinctipy.get_colors(len(masks)+1)
font = cv2.FONT_HERSHEY_SIMPLEX
text_thickness = 2
font_scale_list = []
label_list = []
color_list = []
label_loc_list = []
for anno_i in range(len(masks)):
mask = masks[anno_i]
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if colors[anno_i][0] > 0.9 and colors[anno_i][1] > 0.9 and colors[anno_i][2] > 0.9:
color_anno_i = (colors[-1][2] * 255, colors[-1][1] * 255, colors[-1][0] * 255)
else:
color_anno_i = (colors[anno_i][2] * 255, colors[anno_i][1] * 255, colors[anno_i][0] * 255)
cv2.drawContours(image, contours, -1, color=color_anno_i, thickness=2)
cnt_area = []
cnt_centroid = []
cnt_bbox = []
for cnt in contours:
cnt_area.append(cv2.contourArea(cnt))
M = cv2.moments(cnt)
x, y, w, h = cv2.boundingRect(cnt)
if M["m00"] > 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
else:
cx, cy = x + w/2, y + h/2
cnt_centroid.append((cx, cy))
cnt_bbox.append((w, h))
select_cnt = 0
if len(cnt_area) > 1:
select_cnt = np.argmax(np.array(cnt_area))
select_centroid = cnt_centroid[select_cnt]
visual_prompt_id = anno_i+1 if mask_ids is None else mask_ids[anno_i]
boxW, boxH = cnt_bbox[select_cnt]
if max(boxH, boxW) < 25:
thickness=1
else:
thickness=text_thickness
# find the optimal font scale: text width/height close to 1/5 of the bbox width/height
ok = False
for scale in reversed(range(5, 60, 1)):
textSize = cv2.getTextSize(f"{visual_prompt_id}", font, scale/10, thickness)
textW, textH = textSize[0][0], textSize[0][1]
if textH / boxH > 0.15 or textW / boxW > 0.15:
continue
font_scale_list.append(scale/10)
ok = True
break
if not ok:
font_scale_list.append(0.5)
label_list.append(visual_prompt_id)
color_list.append(color_anno_i)
(base_w, base_h), bottom = cv2.getTextSize(f"{visual_prompt_id}", font, font_scale_list[-1], thickness)
label_loc_list.append((
int(select_centroid[0] - base_w/2),
int(select_centroid[1] + (base_h+bottom)/2)
))
font_scale = min(font_scale_list)
for anno_i in range(len(label_list)):
(base_w, base_h), bottom = cv2.getTextSize(f"{label_list[anno_i]}", font, font_scale, thickness)
cv2.rectangle(image, (label_loc_list[anno_i][0], int(label_loc_list[anno_i][1]-base_h-bottom/2)),
(label_loc_list[anno_i][0]+base_w, int(label_loc_list[anno_i][1]+bottom/2)),
color_list[anno_i], -1, 8)
cv2.putText(image, f"{label_list[anno_i]}", label_loc_list[anno_i], font, font_scale,
(255, 255, 255), thickness)
return None
path = "zhouyik/colva_internvl2_4b"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=True)
# pure-text conversation
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# image-text conversation
pixel_values = load_image(os.path.join(path, "examples/image1.jpg"), max_num=12).to(torch.bfloat16).cuda()
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')
# muti-images object matching
image_path_list = [os.path.join(path, "examples/match_case/FRAME00_ORI.jpg"), os.path.join(path, "examples/match_case/FRAME01_ORI.jpg")]
anno_file_list = [os.path.join(path, "examples/match_case/FRAME00.json"), os.path.join(path, "examples/match_case/FRAME01_CAND.json")]
# load annotations
region_list = []
for query_json_file in anno_file_list[:-1]:
with open(query_json_file, 'r') as f:
query_anno = json.load(f)
ori_height, ori_width = query_anno[0]['height'], query_anno[0]['width']
segm = query_anno[0]['segmentation']
segm = [np.array(poly) for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
mask = polygons_to_bitmask(segm, ori_height, ori_width)
region_list.append(mask[np.newaxis, :, :].astype(np.uint8))
with open(anno_file_list[-1], 'r') as f:
query_anno = json.load(f)
all_masks = []
for idx in range(len(query_anno)):
ori_height, ori_width = query_anno[idx]['height'], query_anno[idx]['width']
segm = query_anno[idx]['segmentation']
segm = [np.array(poly) for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
mask = polygons_to_bitmask(segm, ori_height, ori_width)
all_masks.append(mask)
all_masks = np.stack(all_masks, axis=0)
region_list.append(all_masks.astype(np.uint8))
# draw the visual prompts on the image
overlied_images = [cv2.imread(img_file) for img_file in image_path_list]
for fidx, (image, regions) in enumerate(zip(overlied_images[:-1], region_list[:-1])):
for region in regions:
contours, hierarchy = cv2.findContours(region, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(overlied_images[fidx], contours, -1, color=(255, 255, 0), thickness=2)
random_id = list(range(1, len(region_list[-1])+1))
random.shuffle(random_id)
all_region_ids = random_id
contour_rendering(overlied_images[-1], region_list[-1], random_id)
for fidx, overlied_image in enumerate(overlied_images):
cv2.imwrite(f"./overlied_image_{fidx+1}.jpg", overlied_image)
overlied_images = [Image.fromarray(cv2.cvtColor(item, cv2.COLOR_BGR2RGB)) for item in overlied_images]
# prepare radio inputs
ot_image_processor = CLIPImageProcessor.from_pretrained("./nvidia/RADIO", trust_remote_code=True)
ot_images = [Image.open(image_name).convert('RGB') for image_name in image_path_list]
ot_pixel_values, ot_visual_prompts = [], []
for fi, image in enumerate(ot_images):
w, h = image.size
if w > h:
target_size = (1024, int(h/w*1024))
else:
target_size = (int(w/h*1024), 1024)
resized_image = image.resize(target_size)
cur_w, cur_h = resized_image.size
padded_image = np.ones(shape=(1024, 1024, 3), dtype=np.uint8) * 255
padded_image[:cur_h, :cur_w, :] = np.array(resized_image)
ot_pixel_values.append(ot_image_processor(images=Image.fromarray(padded_image), return_tensors='pt').pixel_values)
ot_pixel_values = torch.cat(ot_pixel_values).to(torch.bfloat16).cuda()
for regions in region_list:
h, w = regions.shape[-2:]
regions = torch.from_numpy(regions).to(ot_pixel_values.dtype).to(ot_pixel_values.device)
if h > w:
padded_regions = regions.new_zeros((regions.shape[0], h, h))
else:
padded_regions = regions.new_zeros((regions.shape[0], w, w))
padded_regions[:, :h, :w] = regions
resized_padded_regions = F.interpolate(padded_regions.unsqueeze(0), size=(1024, 1024), mode='bilinear').squeeze(0)
ot_visual_prompts.append(resized_padded_regions)
# prepare choice items
choice_names = [f"{chr(i)}" for i in range(65,91)]
if len(regions) > len(choice_names) - 1:
valid_num = len(choice_names) - 1
else:
valid_num = len(regions)
region_ids = random_id[:valid_num]
choice_names = choice_names[:valid_num+1]
region_ids.sort()
multi_choices_str = ""
for choice_name, region_id in zip(choice_names[:-1], region_ids):
multi_choices_str = multi_choices_str + f"{choice_name}. {region_id}\n"
multi_choices_str = multi_choices_str + f"{choice_names[-1]}. None of the above choices are correct\n"
question = "Here are two images. In the second image, I have marked several "\
"visual objects with their contours in different colors, and each "\
"is identified by a white numeric ID against a background that "\
"matches the contour's color. Could you please tell me which of "\
"these marked objects is the same as the object marked with a cyan "\
"contour in the first image? Please make a choice from the following options: \n"
object_token_str = ""
for fidx in range(len(overlied_images)-1):
object_token_str = object_token_str + f"Objects in Image-{fidx+1}: <query object>{VPT_CONTEXT_TOKEN}\n"
object_token_str = object_token_str + f"Objects in Image-{len(overlied_images)}: "
sorted_indices = sorted(range(len(all_region_ids)), key=lambda k: all_region_ids[k])
for sorted_idx in sorted_indices:
object_token_str = object_token_str + f"<object-{all_region_ids[sorted_idx]}>{VPT_CONTEXT_TOKEN}, "
object_token_str = object_token_str[:-2] + '.\n'
prefix_str = f"Image-1: <image>\nImage-2: <image>\n" + object_token_str
question = prefix_str + question + multi_choices_str
num_patches_list = []
pixel_values_list = []
for overlied_image in overlied_images:
pixel_values = load_image(overlied_image, max_num=12).to(torch.bfloat16).cuda()
pixel_values_list.append(pixel_values)
num_patches_list.append(pixel_values.size(0))
pixel_values = torch.cat(pixel_values_list, dim=0)
response, history = model.chat(tokenizer, pixel_values, question, generation_config, return_history=True,
num_patches_list=num_patches_list, ot_pixel_values=ot_pixel_values, ot_visual_prompts=ot_visual_prompts)
print(f'User: {question}\nAssistant: {response}')
question = "Why are they the same one?"
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True,
num_patches_list=num_patches_list, ot_pixel_values=ot_pixel_values, ot_visual_prompts=ot_visual_prompts)
print(f'User: {question}\nAssistant: {response}')
```
## License
This project is released under the MIT License. This project uses the pre-trained InternVL2-4B as a component, which is also licensed under the MIT License.
## Citation
If you find this project useful in your research, please consider citing:
```BibTeX
@misc{zhou2025sameexploringvisualcorrespondence,
title={Are They the Same? Exploring Visual Correspondence Shortcomings of Multimodal LLMs},
author={Yikang Zhou and Tao Zhang and Shilin Xu and Shihao Chen and Qianyu Zhou and Yunhai Tong and Shunping Ji and Jiangning Zhang and Xiangtai Li and Lu Qi},
year={2025},
eprint={2501.04670},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2501.04670},
}
``` |