|
import math |
|
from copy import deepcopy |
|
from pathlib import Path |
|
|
|
import torch |
|
import yaml |
|
from torch import nn |
|
|
|
from facelib.detection.yolov5face.models.common import ( |
|
C3, |
|
NMS, |
|
SPP, |
|
AutoShape, |
|
Bottleneck, |
|
BottleneckCSP, |
|
Concat, |
|
Conv, |
|
DWConv, |
|
Focus, |
|
ShuffleV2Block, |
|
StemBlock, |
|
) |
|
from facelib.detection.yolov5face.models.experimental import CrossConv, MixConv2d |
|
from facelib.detection.yolov5face.utils.autoanchor import check_anchor_order |
|
from facelib.detection.yolov5face.utils.general import make_divisible |
|
from facelib.detection.yolov5face.utils.torch_utils import copy_attr, fuse_conv_and_bn |
|
|
|
|
|
class Detect(nn.Module): |
|
stride = None |
|
export = False |
|
|
|
def __init__(self, nc=80, anchors=(), ch=()): |
|
super().__init__() |
|
self.nc = nc |
|
self.no = nc + 5 + 10 |
|
|
|
self.nl = len(anchors) |
|
self.na = len(anchors[0]) // 2 |
|
self.grid = [torch.zeros(1)] * self.nl |
|
a = torch.tensor(anchors).float().view(self.nl, -1, 2) |
|
self.register_buffer("anchors", a) |
|
self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) |
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) |
|
|
|
def forward(self, x): |
|
z = [] |
|
if self.export: |
|
for i in range(self.nl): |
|
x[i] = self.m[i](x[i]) |
|
return x |
|
for i in range(self.nl): |
|
x[i] = self.m[i](x[i]) |
|
bs, _, ny, nx = x[i].shape |
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() |
|
|
|
if not self.training: |
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]: |
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) |
|
|
|
y = torch.full_like(x[i], 0) |
|
y[..., [0, 1, 2, 3, 4, 15]] = x[i][..., [0, 1, 2, 3, 4, 15]].sigmoid() |
|
y[..., 5:15] = x[i][..., 5:15] |
|
|
|
y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] |
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] |
|
|
|
y[..., 5:7] = ( |
|
y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] |
|
) |
|
y[..., 7:9] = ( |
|
y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] |
|
) |
|
y[..., 9:11] = ( |
|
y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] |
|
) |
|
y[..., 11:13] = ( |
|
y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] |
|
) |
|
y[..., 13:15] = ( |
|
y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] |
|
) |
|
|
|
z.append(y.view(bs, -1, self.no)) |
|
|
|
return x if self.training else (torch.cat(z, 1), x) |
|
|
|
@staticmethod |
|
def _make_grid(nx=20, ny=20): |
|
|
|
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) |
|
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() |
|
|
|
|
|
class Model(nn.Module): |
|
def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None): |
|
super().__init__() |
|
self.yaml_file = Path(cfg).name |
|
with Path(cfg).open(encoding="utf8") as f: |
|
self.yaml = yaml.safe_load(f) |
|
|
|
|
|
ch = self.yaml["ch"] = self.yaml.get("ch", ch) |
|
if nc and nc != self.yaml["nc"]: |
|
self.yaml["nc"] = nc |
|
|
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) |
|
self.names = [str(i) for i in range(self.yaml["nc"])] |
|
|
|
|
|
m = self.model[-1] |
|
if isinstance(m, Detect): |
|
s = 128 |
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) |
|
m.anchors /= m.stride.view(-1, 1, 1) |
|
check_anchor_order(m) |
|
self.stride = m.stride |
|
self._initialize_biases() |
|
|
|
def forward(self, x): |
|
return self.forward_once(x) |
|
|
|
def forward_once(self, x): |
|
y = [] |
|
for m in self.model: |
|
if m.f != -1: |
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] |
|
|
|
x = m(x) |
|
y.append(x if m.i in self.save else None) |
|
|
|
return x |
|
|
|
def _initialize_biases(self, cf=None): |
|
|
|
m = self.model[-1] |
|
for mi, s in zip(m.m, m.stride): |
|
b = mi.bias.view(m.na, -1) |
|
b.data[:, 4] += math.log(8 / (640 / s) ** 2) |
|
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) |
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) |
|
|
|
def _print_biases(self): |
|
m = self.model[-1] |
|
for mi in m.m: |
|
b = mi.bias.detach().view(m.na, -1).T |
|
print(("%6g Conv2d.bias:" + "%10.3g" * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) |
|
|
|
def fuse(self): |
|
print("Fusing layers... ") |
|
for m in self.model.modules(): |
|
if isinstance(m, Conv) and hasattr(m, "bn"): |
|
m.conv = fuse_conv_and_bn(m.conv, m.bn) |
|
delattr(m, "bn") |
|
m.forward = m.fuseforward |
|
elif type(m) is nn.Upsample: |
|
m.recompute_scale_factor = None |
|
return self |
|
|
|
def nms(self, mode=True): |
|
present = isinstance(self.model[-1], NMS) |
|
if mode and not present: |
|
print("Adding NMS... ") |
|
m = NMS() |
|
m.f = -1 |
|
m.i = self.model[-1].i + 1 |
|
self.model.add_module(name=str(m.i), module=m) |
|
self.eval() |
|
elif not mode and present: |
|
print("Removing NMS... ") |
|
self.model = self.model[:-1] |
|
return self |
|
|
|
def autoshape(self): |
|
print("Adding autoShape... ") |
|
m = AutoShape(self) |
|
copy_attr(m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=()) |
|
return m |
|
|
|
|
|
def parse_model(d, ch): |
|
anchors, nc, gd, gw = d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"] |
|
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors |
|
no = na * (nc + 5) |
|
|
|
layers, save, c2 = [], [], ch[-1] |
|
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): |
|
m = eval(m) if isinstance(m, str) else m |
|
for j, a in enumerate(args): |
|
try: |
|
args[j] = eval(a) if isinstance(a, str) else a |
|
except: |
|
pass |
|
|
|
n = max(round(n * gd), 1) if n > 1 else n |
|
if m in [ |
|
Conv, |
|
Bottleneck, |
|
SPP, |
|
DWConv, |
|
MixConv2d, |
|
Focus, |
|
CrossConv, |
|
BottleneckCSP, |
|
C3, |
|
ShuffleV2Block, |
|
StemBlock, |
|
]: |
|
c1, c2 = ch[f], args[0] |
|
|
|
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 |
|
|
|
args = [c1, c2, *args[1:]] |
|
if m in [BottleneckCSP, C3]: |
|
args.insert(2, n) |
|
n = 1 |
|
elif m is nn.BatchNorm2d: |
|
args = [ch[f]] |
|
elif m is Concat: |
|
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f) |
|
elif m is Detect: |
|
args.append([ch[x + 1] for x in f]) |
|
if isinstance(args[1], int): |
|
args[1] = [list(range(args[1] * 2))] * len(f) |
|
else: |
|
c2 = ch[f] |
|
|
|
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) |
|
t = str(m)[8:-2].replace("__main__.", "") |
|
np = sum(x.numel() for x in m_.parameters()) |
|
m_.i, m_.f, m_.type, m_.np = i, f, t, np |
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) |
|
layers.append(m_) |
|
ch.append(c2) |
|
return nn.Sequential(*layers), sorted(save) |
|
|