codeformer / basicsr /data /ffhq_blind_joint_dataset.py
zhangbo2008's picture
Upload folder using huggingface_hub
6c60ccc
import cv2
import math
import random
import numpy as np
import os.path as osp
from scipy.io import loadmat
import torch
import torch.utils.data as data
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast,
adjust_hue, adjust_saturation, normalize)
from basicsr.data import gaussian_kernels as gaussian_kernels
from basicsr.data.transforms import augment
from basicsr.data.data_util import paths_from_folder
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class FFHQBlindJointDataset(data.Dataset):
def __init__(self, opt):
super(FFHQBlindJointDataset, self).__init__()
logger = get_root_logger()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.gt_folder = opt['dataroot_gt']
self.gt_size = opt.get('gt_size', 512)
self.in_size = opt.get('in_size', 512)
assert self.gt_size >= self.in_size, 'Wrong setting.'
self.mean = opt.get('mean', [0.5, 0.5, 0.5])
self.std = opt.get('std', [0.5, 0.5, 0.5])
self.component_path = opt.get('component_path', None)
self.latent_gt_path = opt.get('latent_gt_path', None)
if self.component_path is not None:
self.crop_components = True
self.components_dict = torch.load(self.component_path)
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1.4)
self.nose_enlarge_ratio = opt.get('nose_enlarge_ratio', 1.1)
self.mouth_enlarge_ratio = opt.get('mouth_enlarge_ratio', 1.3)
else:
self.crop_components = False
if self.latent_gt_path is not None:
self.load_latent_gt = True
self.latent_gt_dict = torch.load(self.latent_gt_path)
else:
self.load_latent_gt = False
if self.io_backend_opt['type'] == 'lmdb':
self.io_backend_opt['db_paths'] = self.gt_folder
if not self.gt_folder.endswith('.lmdb'):
raise ValueError("'dataroot_gt' should end with '.lmdb', "f'but received {self.gt_folder}')
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
self.paths = [line.split('.')[0] for line in fin]
else:
self.paths = paths_from_folder(self.gt_folder)
# perform corrupt
self.use_corrupt = opt.get('use_corrupt', True)
self.use_motion_kernel = False
# self.use_motion_kernel = opt.get('use_motion_kernel', True)
if self.use_motion_kernel:
self.motion_kernel_prob = opt.get('motion_kernel_prob', 0.001)
motion_kernel_path = opt.get('motion_kernel_path', 'basicsr/data/motion-blur-kernels-32.pth')
self.motion_kernels = torch.load(motion_kernel_path)
if self.use_corrupt:
# degradation configurations
self.blur_kernel_size = self.opt['blur_kernel_size']
self.kernel_list = self.opt['kernel_list']
self.kernel_prob = self.opt['kernel_prob']
# Small degradation
self.blur_sigma = self.opt['blur_sigma']
self.downsample_range = self.opt['downsample_range']
self.noise_range = self.opt['noise_range']
self.jpeg_range = self.opt['jpeg_range']
# Large degradation
self.blur_sigma_large = self.opt['blur_sigma_large']
self.downsample_range_large = self.opt['downsample_range_large']
self.noise_range_large = self.opt['noise_range_large']
self.jpeg_range_large = self.opt['jpeg_range_large']
# print
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]')
logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]')
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]')
# color jitter
self.color_jitter_prob = opt.get('color_jitter_prob', None)
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob', None)
self.color_jitter_shift = opt.get('color_jitter_shift', 20)
if self.color_jitter_prob is not None:
logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}')
# to gray
self.gray_prob = opt.get('gray_prob', 0.0)
if self.gray_prob is not None:
logger.info(f'Use random gray. Prob: {self.gray_prob}')
self.color_jitter_shift /= 255.
@staticmethod
def color_jitter(img, shift):
"""jitter color: randomly jitter the RGB values, in numpy formats"""
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
img = img + jitter_val
img = np.clip(img, 0, 1)
return img
@staticmethod
def color_jitter_pt(img, brightness, contrast, saturation, hue):
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
fn_idx = torch.randperm(4)
for fn_id in fn_idx:
if fn_id == 0 and brightness is not None:
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
img = adjust_brightness(img, brightness_factor)
if fn_id == 1 and contrast is not None:
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
img = adjust_contrast(img, contrast_factor)
if fn_id == 2 and saturation is not None:
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
img = adjust_saturation(img, saturation_factor)
if fn_id == 3 and hue is not None:
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
img = adjust_hue(img, hue_factor)
return img
def get_component_locations(self, name, status):
components_bbox = self.components_dict[name]
if status[0]: # hflip
# exchange right and left eye
tmp = components_bbox['left_eye']
components_bbox['left_eye'] = components_bbox['right_eye']
components_bbox['right_eye'] = tmp
# modify the width coordinate
components_bbox['left_eye'][0] = self.gt_size - components_bbox['left_eye'][0]
components_bbox['right_eye'][0] = self.gt_size - components_bbox['right_eye'][0]
components_bbox['nose'][0] = self.gt_size - components_bbox['nose'][0]
components_bbox['mouth'][0] = self.gt_size - components_bbox['mouth'][0]
locations_gt = {}
locations_in = {}
for part in ['left_eye', 'right_eye', 'nose', 'mouth']:
mean = components_bbox[part][0:2]
half_len = components_bbox[part][2]
if 'eye' in part:
half_len *= self.eye_enlarge_ratio
elif part == 'nose':
half_len *= self.nose_enlarge_ratio
elif part == 'mouth':
half_len *= self.mouth_enlarge_ratio
loc = np.hstack((mean - half_len + 1, mean + half_len))
loc = torch.from_numpy(loc).float()
locations_gt[part] = loc
loc_in = loc/(self.gt_size//self.in_size)
locations_in[part] = loc_in
return locations_gt, locations_in
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# load gt image
gt_path = self.paths[index]
name = osp.basename(gt_path)[:-4]
img_bytes = self.file_client.get(gt_path)
img_gt = imfrombytes(img_bytes, float32=True)
# random horizontal flip
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
if self.load_latent_gt:
if status[0]:
latent_gt = self.latent_gt_dict['hflip'][name]
else:
latent_gt = self.latent_gt_dict['orig'][name]
if self.crop_components:
locations_gt, locations_in = self.get_component_locations(name, status)
# generate in image
img_in = img_gt
if self.use_corrupt:
# motion blur
if self.use_motion_kernel and random.random() < self.motion_kernel_prob:
m_i = random.randint(0,31)
k = self.motion_kernels[f'{m_i:02d}']
img_in = cv2.filter2D(img_in,-1,k)
# gaussian blur
kernel = gaussian_kernels.random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
self.blur_kernel_size,
self.blur_sigma,
self.blur_sigma,
[-math.pi, math.pi],
noise_range=None)
img_in = cv2.filter2D(img_in, -1, kernel)
# downsample
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
img_in = cv2.resize(img_in, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR)
# noise
if self.noise_range is not None:
noise_sigma = np.random.uniform(self.noise_range[0] / 255., self.noise_range[1] / 255.)
noise = np.float32(np.random.randn(*(img_in.shape))) * noise_sigma
img_in = img_in + noise
img_in = np.clip(img_in, 0, 1)
# jpeg
if self.jpeg_range is not None:
jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1])
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param)
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255.
# resize to in_size
img_in = cv2.resize(img_in, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR)
# generate in_large with large degradation
img_in_large = img_gt
if self.use_corrupt:
# motion blur
if self.use_motion_kernel and random.random() < self.motion_kernel_prob:
m_i = random.randint(0,31)
k = self.motion_kernels[f'{m_i:02d}']
img_in_large = cv2.filter2D(img_in_large,-1,k)
# gaussian blur
kernel = gaussian_kernels.random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
self.blur_kernel_size,
self.blur_sigma_large,
self.blur_sigma_large,
[-math.pi, math.pi],
noise_range=None)
img_in_large = cv2.filter2D(img_in_large, -1, kernel)
# downsample
scale = np.random.uniform(self.downsample_range_large[0], self.downsample_range_large[1])
img_in_large = cv2.resize(img_in_large, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR)
# noise
if self.noise_range_large is not None:
noise_sigma = np.random.uniform(self.noise_range_large[0] / 255., self.noise_range_large[1] / 255.)
noise = np.float32(np.random.randn(*(img_in_large.shape))) * noise_sigma
img_in_large = img_in_large + noise
img_in_large = np.clip(img_in_large, 0, 1)
# jpeg
if self.jpeg_range_large is not None:
jpeg_p = np.random.uniform(self.jpeg_range_large[0], self.jpeg_range_large[1])
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p]
_, encimg = cv2.imencode('.jpg', img_in_large * 255., encode_param)
img_in_large = np.float32(cv2.imdecode(encimg, 1)) / 255.
# resize to in_size
img_in_large = cv2.resize(img_in_large, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR)
# random color jitter (only for lq)
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
img_in = self.color_jitter(img_in, self.color_jitter_shift)
img_in_large = self.color_jitter(img_in_large, self.color_jitter_shift)
# random to gray (only for lq)
if self.gray_prob and np.random.uniform() < self.gray_prob:
img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY)
img_in = np.tile(img_in[:, :, None], [1, 1, 3])
img_in_large = cv2.cvtColor(img_in_large, cv2.COLOR_BGR2GRAY)
img_in_large = np.tile(img_in_large[:, :, None], [1, 1, 3])
# BGR to RGB, HWC to CHW, numpy to tensor
img_in, img_in_large, img_gt = img2tensor([img_in, img_in_large, img_gt], bgr2rgb=True, float32=True)
# random color jitter (pytorch version) (only for lq)
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
brightness = self.opt.get('brightness', (0.5, 1.5))
contrast = self.opt.get('contrast', (0.5, 1.5))
saturation = self.opt.get('saturation', (0, 1.5))
hue = self.opt.get('hue', (-0.1, 0.1))
img_in = self.color_jitter_pt(img_in, brightness, contrast, saturation, hue)
img_in_large = self.color_jitter_pt(img_in_large, brightness, contrast, saturation, hue)
# round and clip
img_in = np.clip((img_in * 255.0).round(), 0, 255) / 255.
img_in_large = np.clip((img_in_large * 255.0).round(), 0, 255) / 255.
# Set vgg range_norm=True if use the normalization here
# normalize
normalize(img_in, self.mean, self.std, inplace=True)
normalize(img_in_large, self.mean, self.std, inplace=True)
normalize(img_gt, self.mean, self.std, inplace=True)
return_dict = {'in': img_in, 'in_large_de': img_in_large, 'gt': img_gt, 'gt_path': gt_path}
if self.crop_components:
return_dict['locations_in'] = locations_in
return_dict['locations_gt'] = locations_gt
if self.load_latent_gt:
return_dict['latent_gt'] = latent_gt
return return_dict
def __len__(self):
return len(self.paths)