聂如 commited on
Commit
61028eb
·
1 Parent(s): fdb14fd
Files changed (2) hide show
  1. NVS.pth +3 -0
  2. README.md +55 -0
NVS.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db64e94fae6a3cd371d9bd870d92575b83e3d27221b97194c2fd15897b757308
3
+ size 5698931135
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: image-to-3d
3
+ library_name: pytorch
4
+ license: apache-2.0
5
+ ---
6
+
7
+ # FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views
8
+
9
+ [![Website](https://img.shields.io/website-up-down-green-red/http/shields.io.svg)](https://zhanghe3z.github.io/FLARE/)
10
+ [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97-Hugging%20Face-yellow)](https://huggingface.co/AntResearch/FLARE)
11
+ [![Video](https://img.shields.io/badge/Video-Demo-red)](https://zhanghe3z.github.io/FLARE/videos/teaser_video.mp4)
12
+
13
+ This repository contains the FLARE model, as presented in [FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views](https://hf.co/papers/2502.12138). FLARE is a feed-forward model that estimates high-quality camera poses, 3D geometry, and appearance from as few as 2-8 uncalibrated images.
14
+
15
+ Project Page: https://zhanghe3z.github.io/FLARE/
16
+
17
+ ## Run a Demo (Point Cloud and Camera Pose Estimation)
18
+
19
+ To run a demo, follow these steps:
20
+
21
+ 1. **Install Dependencies:** Ensure you have PyTorch and other necessary libraries installed as detailed in the [installation instructions](https://github.com/zhanghe3z/FLARE#installation).
22
+ 2. **Download Checkpoint:** Download the checkpoint from [Hugging Face](https://huggingface.co/AntResearch/FLARE/blob/main/geometry_pose.pth) and place it in the `/checkpoints/geometry_pose.pth` directory.
23
+ 3. **Run the Script:** Execute the following command, replacing `"Your/Data/Path"` and `"Your/Checkpoint/Path"` with the appropriate paths:
24
+
25
+ ```bash
26
+ torchrun --nproc_per_node=1 run_pose_pointcloud.py \
27
+ --test_dataset "1 @ CustomDataset(split='train', ROOT='Your/Data/Path', resolution=(512,384), seed=1, num_views=8, gt_num_image=0, aug_portrait_or_landscape=False, sequential_input=False)" \
28
+ --model "AsymmetricMASt3R(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='catmlp+dpt', output_mode='pts3d+desc24', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, two_confs=True, desc_conf_mode=('exp', 0, inf))" \
29
+ --pretrained "Your/Checkpoint/Path" \
30
+ --test_criterion "MeshOutput(sam=False)" --output_dir "log/" --amp 1 --seed 1 --num_workers 0
31
+ ```
32
+
33
+ ## Visualization
34
+
35
+ After running the demo, you can visualize the results using the following command:
36
+
37
+ ```bash
38
+ sh ./visualizer/vis.sh
39
+ ```
40
+
41
+ This will run a visualization script. Refer to the Github README for more details on visualization options.
42
+
43
+ ## Citation
44
+
45
+ ```bibtex
46
+ @misc{zhang2025flarefeedforwardgeometryappearance,
47
+ title={FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views},
48
+ author={Shangzhan Zhang and Jianyuan Wang and Yinghao Xu and Nan Xue and Christian Rupprecht and Xiaowei Zhou and Yujun Shen and Gordon Wetzstein},
49
+ year={2025},
50
+ eprint={2502.12138},
51
+ archivePrefix={arXiv},
52
+ primaryClass={cs.CV},
53
+ url={https://arxiv.org/abs/2502.12138},
54
+ }
55
+ ```