File size: 1,915 Bytes
70e5047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: roberta-base-qe-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-qe-v1

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0626

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 10000

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.063         | 0.1004 | 1000  | 0.0816          |
| 0.062         | 0.2007 | 2000  | 0.0667          |
| 0.0582        | 0.3011 | 3000  | 0.0622          |
| 0.0589        | 0.4015 | 4000  | 0.0604          |
| 0.0576        | 0.5019 | 5000  | 0.0591          |
| 0.0577        | 0.6022 | 6000  | 0.0597          |
| 0.0581        | 0.7026 | 7000  | 0.0649          |
| 0.0582        | 0.8030 | 8000  | 0.0624          |
| 0.0569        | 0.9033 | 9000  | 0.0625          |
| 0.0575        | 1.0037 | 10000 | 0.0626          |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0