--- language: - ga - en license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - ymoslem/IWSLT2023-GA-EN - ymoslem/FLEURS-GA-EN - ymoslem/BitesizeIrish-GA-EN - ymoslem/SpokenWords-GA-EN-MTed metrics: - bleu - wer model-index: - name: Whisper Medium GA-EN Speech Translation Raw results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IWSLT-2023, FLEURS, BiteSize, and SpokenWords type: ymoslem/IWSLT2023-GA-EN metrics: - name: Bleu type: bleu value: 28.37 - name: Wer type: wer value: 68.12246735704638 --- # Whisper Medium GA-EN Speech Translation Raw This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the IWSLT-2023, FLEURS, BiteSize, and SpokenWords dataset. It achieves the following results on the evaluation set: - Bleu: 28.37 - Chrf: 45.85 - Loss: 1.4194 - Wer: 68.1225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer | |:-------------:|:------:|:----:|:-----:|:-----:|:---------------:|:--------:| | 2.5874 | 0.0539 | 100 | 4.9 | 19.49 | 2.1785 | 114.0027 | | 2.3237 | 0.1079 | 200 | 6.48 | 22.77 | 2.1129 | 151.8235 | | 2.192 | 0.1618 | 300 | 7.92 | 25.9 | 2.0182 | 148.6718 | | 1.9861 | 0.2157 | 400 | 10.55 | 28.55 | 1.8607 | 121.0266 | | 1.8893 | 0.2697 | 500 | 16.68 | 33.64 | 1.8560 | 89.7794 | | 1.8526 | 0.3236 | 600 | 8.83 | 30.12 | 1.7738 | 166.9968 | | 1.6537 | 0.3776 | 700 | 10.94 | 33.83 | 1.6781 | 152.2287 | | 1.7103 | 0.4315 | 800 | 16.9 | 36.4 | 1.6389 | 92.2557 | | 1.4837 | 0.4854 | 900 | 13.81 | 34.5 | 1.6077 | 124.2233 | | 1.2784 | 0.5394 | 1000 | 14.79 | 37.53 | 1.6103 | 116.3440 | | 1.111 | 0.5933 | 1100 | 19.31 | 39.0 | 1.5579 | 93.6965 | | 1.167 | 0.6472 | 1200 | 20.88 | 41.7 | 1.5210 | 91.6704 | | 1.2217 | 0.7012 | 1300 | 21.29 | 41.72 | 1.4719 | 84.9167 | | 1.0613 | 0.7551 | 1400 | 28.3 | 44.37 | 1.4663 | 67.1319 | | 0.9256 | 0.8091 | 1500 | 27.5 | 45.59 | 1.4258 | 68.7078 | | 0.8023 | 0.8630 | 1600 | 27.1 | 46.27 | 1.4027 | 72.7600 | | 0.8327 | 0.9169 | 1700 | 27.03 | 46.19 | 1.3784 | 73.0302 | | 0.7019 | 0.9709 | 1800 | 28.91 | 46.34 | 1.4127 | 67.4921 | | 0.2681 | 1.0248 | 1900 | 28.53 | 47.12 | 1.3955 | 68.3026 | | 0.2659 | 1.0787 | 2000 | 28.37 | 45.85 | 1.4194 | 68.1225 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1