--- library_name: transformers language: - multilingual - bn - cs - de - en - et - fi - fr - gu - ha - hi - is - ja - kk - km - lt - lv - pl - ps - ru - ta - tr - uk - xh - zh - zu license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - quality-estimation - regression - generated_from_trainer datasets: - ymoslem/tokenized-wmt-da-human-evaluation model-index: - name: Quality Estimation for Machine Translation results: - task: type: regression dataset: name: ymoslem/wmt-da-human-evaluation-long-context type: QE metrics: - name: Pearson type: Pearson Correlation value: 0.4465 - name: MAE type: Mean Absolute Error value: 0.126 - name: RMSE type: Root Mean Squared Error value: 0.1623 - name: R-R2 type: R-Squared value: 0.0801 - task: type: regression dataset: name: ymoslem/wmt-da-human-evaluation type: QE metrics: - name: Pearson type: Pearson Correlation value: - name: MAE type: Mean Absolute Error value: - name: RMSE type: Root Mean Squared Error value: - name: R-R2 type: R-Squared value: metrics: - pearsonr - mae - r_squared --- # Quality Estimation for Machine Translation This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the ymoslem/tokenized-wmt-da-human-evaluation dataset. It achieves the following results on the evaluation set: - Loss: 0.0571 ## Model description This model is for reference-free, sentence level quality estimation (QE) of machine translation (MT) systems. The long-context / document-level model can be found at: [ModernBERT-base-long-context-qe-v1](https://huggingface.co/ymoslem/ModernBERT-base-long-context-qe-v1), which is trained on a long-context / document-level QE dataset [ymoslem/wmt-da-human-evaluation-long-context](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context) ## Training and evaluation data This model is trained on the sentence-level quality estimation dataset: [ymoslem/wmt-da-human-evaluation](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation) ## Training procedure This version of the model uses the full lengthtokenizer.model_max_length=8192, but it is still trained on a sentence-level QE dataset [ymoslem/wmt-da-human-evaluation](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation) The long-context / document-level model can be found at: [ModernBERT-base-long-context-qe-v1](https://huggingface.co/ymoslem/ModernBERT-base-long-context-qe-v1), which is trained on a long-context / document-level QE dataset [ymoslem/wmt-da-human-evaluation-long-context](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.0686 | 0.1004 | 1000 | 0.0712 | | 0.0652 | 0.2007 | 2000 | 0.0687 | | 0.0648 | 0.3011 | 3000 | 0.0623 | | 0.0609 | 0.4015 | 4000 | 0.0600 | | 0.0585 | 0.5019 | 5000 | 0.0603 | | 0.0588 | 0.6022 | 6000 | 0.0589 | | 0.0592 | 0.7026 | 7000 | 0.0581 | | 0.0585 | 0.8030 | 8000 | 0.0574 | | 0.0588 | 0.9033 | 9000 | 0.0572 | | 0.0563 | 1.0037 | 10000 | 0.0571 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.4.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0