--- library_name: transformers pipeline_tag: text-to-speech tags: - transformers.js - mms - vits license: cc-by-nc-4.0 datasets: - ylacombe/google-argentinian-spanish language: - es --- ## Model This is a finetuned version of the [Spanish version](https://huggingface.co/facebook/mms-tts-spa) of Massively Multilingual Speech (MMS) models, which are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits). It was trained in around **20 minutes** with as little as **80 to 150 samples**, on this [Argentinian Spanish dataset](https://huggingface.co/datasets/ylacombe/google-argentinian-spanish). Training recipe available in this [github repository: **ylacombe/finetune-hf-vits**](https://github.com/ylacombe/finetune-hf-vits). ## Usage ### Transformers ```python from transformers import pipeline import scipy model_id = "ylacombe/mms-spa-finetuned-argentinian-monospeaker" synthesiser = pipeline("text-to-speech", model_id) # add device=0 if you want to use a GPU speech = synthesiser("Hola, ¿cómo estás hoy?") scipy.io.wavfile.write("finetuned_output.wav", rate=speech["sampling_rate"], data=speech["audio"]) ``` ### Transformers.js If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Generate Spanish speech with `ylacombe/mms-spa-finetuned-argentinian-monospeaker`. ```js import { pipeline } from '@xenova/transformers'; // Create a text-to-speech pipeline const synthesizer = await pipeline('text-to-speech', 'ylacombe/mms-spa-finetuned-argentinian-monospeaker', { quantized: false, // Remove this line to use the quantized version (default) }); // Generate speech const output = await synthesizer('Hola, ¿cómo estás hoy?'); console.log(output); // { // audio: Float32Array(69888) [ ... ], // sampling_rate: 16000 // } ``` Optionally, save the audio to a wav file (Node.js): ```js import wavefile from 'wavefile'; import fs from 'fs'; const wav = new wavefile.WaveFile(); wav.fromScratch(1, output.sampling_rate, '32f', output.audio); fs.writeFileSync('out.wav', wav.toBuffer()); ```