--- language: - zh tags: - bert - financial-sentiment-analysis - sentiment-analysis license: "apache-2.0" widget: - text: "此外宁德时代上半年实现出口约2GWh,同比增加200%+。" --- # Financial Sentiment Analysis in Chinese This is a fine-tuned version of FinBERT, based on [bert-base-chinese](https://huggingface.co/bert-base-chinese), on a private dataset (around ~8k analyst report sentences) for sentiment analysis. * Test Accuracy = 0.88 * Test Macro F1 = 0.87 * **Labels**: 0 -> Neutral; 1 -> Positive; 2 -> Negative # Usage ``` from transformers import TextClassificationPipeline from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer from transformers import BertTokenizerFast model_path="./fin_sentiment_bert_zh/" new_model = AutoModelForSequenceClassification.from_pretrained(model_path,output_attentions=True) tokenizer = BertTokenizerFast.from_pretrained(model_path) PipelineInterface = TextClassificationPipeline(model=new_model, tokenizer=tokenizer, return_all_scores=True) label = PipelineInterface("此外宁德时代上半年实现出口约2GWh,同比增加200%+。") print(label) ``` ``` [[{'label': 'LABEL_0', 'score': 0.0007030126871541142}, {'label': 'LABEL_1', 'score': 0.9989339709281921}, {'label': 'LABEL_2', 'score': 0.000363016442861408}]] ```