--- license: mit language: - en base_model: - microsoft/deberta-v3-large pipeline_tag: text-classification --- # FactCG for Large Language Model Ungrounded Hallucination Detection This is a fact-checking model from our work: 📃 [**FactCG: Enhancing Fact Checkers with Graph-Based Multi-Hop Data**](https://arxiv.org/pdf/2501.17144) (NAACL2025, [GitHub Repo](https://github.com/derenlei/FactCG)) You can load our model with the following example code: ```python from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification config = AutoConfig.from_pretrained("yaxili96/FactCG-DeBERTa-v3-Large", num_labels=2, finetuning_task="text-classification", revision='main', token=None, cache_dir="./cache") config.problem_type = "single_label_classification" tokenizer = AutoTokenizer.from_pretrained("yaxili96/FactCG-DeBERTa-v3-Large", use_fast=True, revision='main', token=None, cache_dir="./cache") model = AutoModelForSequenceClassification.from_pretrained( "yaxili96/FactCG-DeBERTa-v3-Large", config=config, revision='main', token=None, ignore_mismatched_sizes=False, cache_dir="./cache") ``` If you find the repository or FactCG helpful, please cite the following paper ```bibtex @inproceedings{lei2025factcg, title={FactCG: Enhancing Fact Checkers with Graph-Based Multi-Hop Data}, author={Lei, Deren and Li, Yaxi and Li, Siyao and Hu, Mengya and Xu, Rui and Archer, Ken and Wang, Mingyu and Ching, Emily and Deng, Alex}, journal={NAACL}, year={2025} } ```