File size: 12,461 Bytes
727b1b9 8f69a30 727b1b9 500d3d7 727b1b9 c48a45d 01711ff c48a45d 54d4a82 727b1b9 01711ff 727b1b9 1e56e4a 727b1b9 a6c0496 727b1b9 ff919ce 46b6c6f edc40ce 46b6c6f f3d419d 46b6c6f edc40ce 6eaabb8 46b6c6f edc40ce 46b6c6f f3d419d 4c98372 f3d419d 46b6c6f f3d419d 46b6c6f 6eaabb8 46b6c6f 727b1b9 f3d419d 4c98372 f3d419d 727b1b9 0046a3e f3d419d 0046a3e 6eaabb8 0046a3e 727b1b9 f3d419d ff919ce f3d419d ff919ce 6eaabb8 ff919ce f3d419d ff919ce f3d419d 727b1b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
---
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-72B
language:
- en
- zh
---
> [!IMPORTANT]
> If you enjoy our model, please **give it a like on our Hugging Face repo**. Your support means a lot to us. Thank you!
> [!IMPORTANT]
> You can download the **GGUF files of Xwen-72B-Chat** at [xwen-team/Xwen-72B-Chat-i1-GGUF](https://huggingface.co/xwen-team/Xwen-72B-Chat-i1-GGUF) (weighted/imatrix quants) and [xwen-team/Xwen-72B-Chat-GGUF](https://huggingface.co/xwen-team/Xwen-72B-Chat-GGUF) (static quants).
NEWS:
- Big thanks to @mradermacher for helping us build GGUFs for our Xwen-72B-Chat and Xwen-7B-Chat! The GGUF files have accumulated **over 2k downloads in one day** π Our official GGUF repos: [**xwen-team/Xwen-72B-Chat-i1-GGUF**](https://huggingface.co/xwen-team/Xwen-72B-Chat-i1-GGUF) (weighted/imatrix quants) and [**xwen-team/Xwen-72B-Chat-GGUF**](https://huggingface.co/xwen-team/Xwen-72B-Chat-GGUF) (static quants).
# Xwen-72B-Chat
<img src="Xwen-Cartoon.jpg" alt="Xwen-Cartoon" style="zoom:35%;" />
## 1. Introduction
Xwen is a series of open-sourced large language models (currently including **[Xwen-72B-Chat](https://huggingface.co/xwen-team/Xwen-72B-Chat)** and **[Xwen-7B-Chat](https://huggingface.co/xwen-team/Xwen-7B-Chat)**), post-trained from the pre-trained Qwen2.5 models (i.e., [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) and [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B)) [1].
**π Top-1 chat performance!** To the best of our knowledge, at the time of Xwen models' release (February 1, 2025), **[Xwen-72B-Chat](https://huggingface.co/xwen-team/Xwen-72B-Chat) and [Xwen-7B-Chat](https://huggingface.co/xwen-team/Xwen-7B-Chat) exhibit the best chat performance among open-sourced models below 100B and 10B, respectively**, based on evaluation results from widely-used benchmarks such as Arena-Hard-Auto [2], MT-Bench [3], and AlignBench [4]. Please view details in the [Evaluation Results](https://huggingface.co/xwen-team/Xwen-72B-Chat#3-evaluation-results) part.
**π Xwen technical report is on the way!** During the training of Xwen models, we have accumulated many technical insights and lessons. To promote the democratization of technology, we are in the process of documenting these insights and lessons in a technical report, which will be released as soon as possible.
## 2. Usage
> [!CAUTION]
> For optimal performance, we refrain from fine-tuning the model's identity. Thus, inquiries such as "Who are you" or "Who developed you" may yield random responses that are not necessarily accurate.
> [!CAUTION]
> This open-source model is provided "as is," without warranties or liabilities, and users assume all risks associated with its use; users are advised to comply with local laws, and the model's outputs do not represent the views or positions of the developers.
The usage of our Xwen-Chat models is similar to that of the Qwen2.5-Instruct models, with the tokenizer and chat template being identical to those of the Qwen2.5-Instruct models.
Here we provide a python script to demonstrate how to deploy our Xwen models to generate reponses:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "xwen-team/Xwen-72B-Chat" # Or "xwen-team/Xwen-7B-Chat" if you want to use the 7B model
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "system", "content": "You are Xwen, created by Xwen Team. You are a helpful assistant."}, # This system prompt is not necessary, and you can put it as an empty string.
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
## 3. Evaluation Results
> [!CAUTION]
> Results on other benchmarks will be updated soon! π
π: Open-sourced
π: Proprietary
### 3.1 Arena-Hard-Auto-v0.1
All results below, except those for `Xwen-72B-Chat`, `DeepSeek-V3` and `DeepSeek-R1`, are sourced from [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) (accessed on February 1, 2025).
The results of `DeepSeek-V3` and `DeepSeek-R1` are borrowed from their officially reported results.
#### 3.1.1 No Style Control
**Comparison of Xwen-72B-Chat with other LLMs at a comparable level:**
| | Score | 95% CIs |
| --------------------------------- | ------------------------ | ----------- |
| **Xwen-72B-Chat** π | **86.1** (Top-1 among π below 100B) | (-1.5, 1.7) |
| Qwen2.5-72B-Instruct π | 78.0 | (-1.8, 1.8) |
| Athene-v2-Chat π | 85.0 | (-1.4, 1.7) |
| DeepSeek-V3 **(671B >> 72B)** π | 85.5 | N/A |
| DeepSeek-R1 **(671B >> 72B)** π | **92.3** (Top-1 among π) | N/A |
| Llama-3.1-Nemotron-70B-Instruct π | 84.9 | (-1.7, 1.8) |
| Llama-3.1-405B-Instruct-FP8 π | 69.3 | (-2.4, 2.2) |
| Claude-3-5-Sonnet-20241022 π | 85.2 | (-1.4, 1.6) |
| O1-Preview-2024-09-12 π | **92.0** (Top-1 among π) | (-1.2, 1.0) |
| O1-Mini-2024-09-12 π | 90.4 | (-1.1, 1.3) |
| GPT-4-Turbo-2024-04-09 π | 82.6 | (-1.8, 1.5) |
| GPT-4-0125-Preview π | 78.0 | (-2.1, 2.4) |
| GPT-4o-2024-08-06 π | 77.9 | (-2.0, 2.1) |
| Yi-Lightning π | 81.5 | (-1.6, 1.6) |
| Yi-Largeπ | 63.7 | (-2.6, 2.4) |
| GLM-4-0520 π | 63.8 | (-2.9, 2.8) |
**Comparison of Xwen-7B-Chat with other LLMs at a comparable level:**
| | Score | 95% CIs |
| ----------------------- | -------- | ----------- |
| **Xwen-7B-Chat** π | **59.4** | (-2.4, 2.1) |
| Qwen2.5-7B-Instruct π | 50.4 | (-2.9, 2.5) |
| Gemma-2-27B-IT π | 57.5 | (-2.1, 2.4) |
| Llama-3.1-8B-Instruct π | 21.3 | (-1.9, 2.2) |
| Llama-3-8B-Instruct π | 20.6 | (-2.0, 1.9) |
| Starling-LM-7B-beta π | 23.0 | (-1.8, 1.8) |
| DeepSeek-R1-Distill-Qwen-7B (only responses) π | 17.2 | (-1.4, 1.7) |
| DeepSeek-R1-Distill-Qwen-7B (w/ thoughts and responses) π | 13.6 | (-1.4, 1.8) |
#### 3.1.2 Style Control
**Comparison of Xwen-72B-Chat with other LLMs at a comparable level:**
| | Score | 95% CIs |
| --------------------------------- | ------------------------ | ----------- |
| **Xwen-72B-Chat** π | **72.4** (Top-1 Among π) | (-4.3, 4.1) |
| Qwen2.5-72B-Instruct π | 63.3 | (-2.5, 2.3) |
| Athene-v2-Chat π | 72.1 | (-2.5, 2.5) |
| Llama-3.1-Nemotron-70B-Instruct π | 71.0 | (-2.8, 3.1) |
| Llama-3.1-405B-Instruct-FP8 π | 67.1 | (-2.2, 2.8) |
| Claude-3-5-Sonnet-20241022 π | **86.4** (Top-1 Among π) | (-1.3, 1.3) |
| O1-Preview-2024-09-12 π | 81.7 | (-2.2, 2.1) |
| O1-Mini-2024-09-12 π | 79.3 | (-2.8, 2.3) |
| GPT-4-Turbo-2024-04-09 π | 74.3 | (-2.4, 2.4) |
| GPT-4-0125-Preview π | 73.6 | (-2.0, 2.0) |
| GPT-4o-2024-08-06 π | 71.1 | (-2.5, 2.0) |
| Yi-Lightning π | 66.9 | (-3.3, 2.7) |
| Yi-Large-Preview π | 65.1 | (-2.5, 2.5) |
| GLM-4-0520 π | 61.4 | (-2.6, 2.4) |
**Comparison of Xwen-7B-Chat with other LLMs at a comparable level:**
| | Score | 95% CIs |
| ----------------------- | -------- | ----------- |
| **Xwen-7B-Chat** π | **50.3** | (-3.8, 2.8) |
| Qwen2.5-7B-Instruct π | 46.9 | (-3.1, 2.7) |
| Gemma-2-27B-IT π | 47.5 | (-2.5, 2.7) |
| Llama-3.1-8B-Instruct π | 18.3 | (-1.6, 1.6) |
| Llama-3-8B-Instruct π | 19.8 | (-1.6, 1.9) |
| Starling-LM-7B-beta π | 26.1 | (-2.6, 2.0) |
| DeepSeek-R1-Distill-Qwen-7B (only responses) π | 18.5 | (-1.6, 1.8) |
| DeepSeek-R1-Distill-Qwen-7B (w/ thoughts and responses) π | 11.8 | (-1.6, 1.6) |
### 3.2 AlignBench-v1.1
> [!IMPORTANT]
> We replaced the original judge model, `GPT-4-0613`, in AlignBench with the more powerful model, `GPT-4o-0513`. To keep fairness, all the results below are generated by ``GPT-4o-0513``. As a result, the following results may differ from the AlignBench-v1.1 scores reported elsewhere.
**Comparison of Xwen-72B-Chat with other LLMs at a comparable level:**
| | Score |
| ----------------------------- | ------------------------ |
| **Xwen-72B-Chat** π | **7.57** (Top-1 Among π) |
| Qwen2.5-72B-Instruct π | 7.51 |
| Deepseek V2.5 π | 7.38 |
| Mistral-Large-Instruct-2407 π | 7.10 |
| Llama3.1-70B-Instruct π | 5.81 |
| Llama-3.1-405B-Instruct-FP8 π | 5.56 |
| GPT-4o-0513 π | **7.59** (Top-1 Among π) |
| Claude-3.5-Sonnet-20240620 π | 7.17 |
| Yi-Lightning π | 7.54 |
| Yi-Large-Preview π | 7.20 |
**Comparison of Xwen-7B-Chat with other LLMs at a comparable level:**
| | Score |
| ------------------ | -------- |
| **Xwen-7B-Chat** π | **6.88** |
| Qwen2.5-7B-Chat π | 6.56 |
### 3.3 MT-Bench
> [!IMPORTANT]
> We replaced the original judge model, `GPT-4`, in MT-Bench with the more powerful model, `GPT-4o-0513`. To keep fairness, all the results below are generated by ``GPT-4o-0513``. As a result, the following results may differ from the MT-Bench scores reported elsewhere.
**Comparison of Xwen-72B-Chat with other LLMs at a comparable level:**
| | Score |
| ----------------------------- | ------------------------ |
| **Xwen-72B-Chat** π | **8.64** (Top-1 Among π) |
| Qwen2.5-72B-Instruct π | 8.62 |
| Deepseek V2.5 π | 8.43 |
| Mistral-Large-Instruct-2407 π | 8.53 |
| Llama3.1-70B-Instruct π | 8.23 |
| Llama-3.1-405B-Instruct-FP8 π | 8.36 |
| GPT-4o-0513 π | 8.59 |
| Claude-3.5-Sonnet-20240620 π | 6.96 |
| Yi-Lightning π | **8.75** (Top-1 Among π) |
| Yi-Large-Preview π | 8.32 |
**Comparison of Xwen-7B-Chat with other LLMs at a comparable level:**
| | Score |
| ------------------ | -------- |
| **Xwen-7B-Chat** π | **7.98** |
| Qwen2.5-7B-Chat π | 7.71 |
## References
[1] Yang, An, et al. "Qwen2. 5 technical report." arXiv preprint arXiv:2412.15115 (2024).
[2] Li, Tianle, et al. "From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline." arXiv preprint arXiv:2406.11939 (2024).
[3] Zheng, Lianmin, et al. "Judging llm-as-a-judge with mt-bench and chatbot arena." Advances in Neural Information Processing Systems 36 (2023).
[4] Liu, Xiao, et al. "Alignbench: Benchmarking chinese alignment of large language models." Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (2024).
|