--- library_name: transformers license: mit base_model: cointegrated/rubert-tiny2 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: slot_token_classification_model results: [] --- # slot_token_classification_model This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4739 - Precision: 0.6455 - Recall: 0.7092 - F1: 0.6758 - Accuracy: 0.8977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.408 | 1.0 | 720 | 0.4998 | 0.6226 | 0.6688 | 0.6449 | 0.8909 | | 0.3758 | 2.0 | 1440 | 0.4815 | 0.6349 | 0.6868 | 0.6598 | 0.8953 | | 0.3383 | 3.0 | 2160 | 0.4746 | 0.6405 | 0.7002 | 0.6690 | 0.8958 | | 0.3278 | 4.0 | 2880 | 0.4733 | 0.6577 | 0.7032 | 0.6797 | 0.8977 | | 0.3053 | 5.0 | 3600 | 0.4739 | 0.6455 | 0.7092 | 0.6758 | 0.8977 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0