File size: 2,516 Bytes
87d91da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
license: mit
language:
- ar
- kn
- ar
- ka
- af
- kk
- am
- km
- ar
- ky
- ar
- ko
- as
- lo
- az
- ml
- az
- mr
- be
- mk
- bn
- my
- bs
- nl
- bg
- ca
- 'no'
- cs
- ne
- ku
- pl
- cy
- pt
- da
- ro
- de
- ru
- el
- sa
- en
- si
- eo
- sk
- et
- sl
- eu
- sd
- fi
- so
- fr
- es
- gd
- sr
- ga
- su
- gl
- sv
- gu
- sw
- ha
- ta
- he
- te
- hi
- th
- hr
- tr
- hu
- ug
- hy
- uk
- id
- ur
- is
- vi
- it
- xh
- jv
- zh
- ja
pipeline_tag: zero-shot-image-classification
tags:
- siglip2
- clip
- mexma
model-index:
- name: mexma-siglip2
results:
- task:
type: zero-shot retrieval
dataset:
name: Crossmodal-3600
type: Crossmodal-3600
metrics:
- name: Image retrieval R@1
type: Image retrieval R@1
value: 62.54%
- name: Text retrieval R@1
type: Text retrieval R@1
value: 59.99%
---
## Model Summary
MEXMA-SigLIP2 is a model that combines the [MEXMA](https://huggingface.co/facebook/MEXMA) multilingual text encoder and an image encoder from the
[SigLIP2](https://huggingface.co/google/siglip2-so400m-patch16-512/) model. This allows us to get a high-performance CLIP model for 80 languages.
MEXMA-SigLIP2 sets new state-of-the-art on the [Crossmodal-3600](https://google.github.io/crossmodal-3600/) dataset with 62.54% R@1 for image retrieval and
59.99% R@1 for text retrieval.
## How to use
```
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor
from PIL import Image
import requests
import torch
model = AutoModel.from_pretrained("visheratin/mexma-siglip2", torch_dtype=torch.bfloat16, trust_remote_code=True, optimized=True).to("cuda")
tokenizer = AutoTokenizer.from_pretrained("visheratin/mexma-siglip2")
processor = AutoImageProcessor.from_pretrained("visheratin/mexma-siglip2")
img = Image.open(requests.get("https://static.independent.co.uk/s3fs-public/thumbnails/image/2014/03/25/12/eiffel.jpg", stream=True).raw)
img = processor(images=img, return_tensors="pt")["pixel_values"]
img = img.to(torch.bfloat16).to("cuda")
with torch.inference_mode():
text = tokenizer(["кошка", "a dog", "एफिल टॉवर"], return_tensors="pt", padding=True).to("cuda")
image_logits, text_logits = model.get_logits(text["input_ids"], text["attention_mask"], img)
probs = image_logits.softmax(dim=-1)
print(probs)
```
## Acknowledgements
I thank [ML Collective](https://mlcollective.org/) for providing compute resources to train the model. |