# Ethically sourced from https://github.com/xjdr-alt/entropix import torch def precompute_freqs_cis( dim: int, end: int, theta: float = 10000.0, use_scaled: bool = False, dtype: torch.dtype = torch.float32, ) -> torch.Tensor: freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=dtype)[: (dim // 2)] / dim)) t = torch.arange(end, dtype=dtype).unsqueeze(1) freqs = t * freqs.unsqueeze(0) freqs = torch.exp(1j * freqs) return torch.stack([freqs.real, freqs.imag], dim=-1) def apply_rotary_emb( x: torch.Tensor, freqs_cis: torch.Tensor, position_ids: torch.Tensor, num_heads: int, rot_dim: int = 32, interleave: bool = False, ) -> torch.Tensor: assert rot_dim == freqs_cis.shape[-2] * 2 assert num_heads == x.shape[1] x_rot, x_pass = x[..., :rot_dim], x[..., rot_dim:] if interleave: xq_r = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 0] xq_i = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 1] else: d_q = x_rot.shape[-1] // 2 xq_r, xq_i = x_rot[..., :d_q], x_rot[..., d_q:] freqs_cos = freqs_cis[..., 0][position_ids, :].unsqueeze(0).unsqueeze(0) freqs_sin = freqs_cis[..., 1][position_ids, :].unsqueeze(0).unsqueeze(0) # Complex multiplication: (a + bi) * (c + di) = (ac - bd) + (ad + bc)i xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos xq_out = torch.stack((xq_out_r, xq_out_i), dim=-1).flatten(-2) return torch.cat([xq_out.to(x.dtype), x_pass], dim=-1)