import torch import torch.nn as nn import random from typing import Literal, Tuple, TypedDict, Union, Dict, Any, Optional from PIL import Image from dataclasses import dataclass from tokenizers import Tokenizer from .config import MoondreamConfig from .image_crops import reconstruct_from_crops from .vision import vision_encoder, vision_projection, prepare_crops, build_vision_model from .text import build_text_model, prefill, text_encoder, lm_head, decode_one_token from .region import decode_coordinate, encode_coordinate, decode_size, encode_size from .utils import remove_outlier_points SamplingSettings = TypedDict( "SamplingSettings", {"max_tokens": int}, total=False, ) DEFAULT_MAX_TOKENS = 512 @dataclass(frozen=True) class EncodedImage: pos: int kv_cache: torch.Tensor def _min_p_sampler( logits: torch.Tensor, min_p: float = 0.1, filter_value: float = 0, min_tokens_to_keep: int = 1, temp=0.5, ) -> torch.Tensor: """ Min-p sampler adapted from https://github.com/oobabooga/text-generation-webui/blob/3146124ec01f02c8fb1650a6517cf1b60b537aaf/modules/sampler_hijack.py#L16C17-L16C17 https://arxiv.org/pdf/2407.01082 """ logits = logits / temp probs = torch.softmax(logits, dim=-1) top_probs, _ = probs.max(dim=-1, keepdim=True) scaled_min_p = min_p * top_probs tokens_to_remove = probs < scaled_min_p sorted_indices = torch.argsort(logits, descending=True, dim=-1) sorted_indices_to_remove = torch.gather( tokens_to_remove, dim=-1, index=sorted_indices ) if min_tokens_to_keep > 1: sorted_indices_to_remove[..., :min_tokens_to_keep] = False indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) logits = logits.masked_fill(indices_to_remove, filter_value) token = torch.multinomial(logits, num_samples=1) return token.squeeze(0) class MoondreamModel(nn.Module): def __init__(self, config: MoondreamConfig, dtype=torch.float16): super().__init__() self.config = config self.tokenizer = Tokenizer.from_pretrained( "vikhyatk/moondream2", revision="2024-08-26" ) self.vision = build_vision_model(config.vision, dtype) self.text = build_text_model(config.text, dtype) # Region Model self.region = nn.ModuleDict( { "coord_encoder": nn.Linear( config.region.coord_feat_dim, config.region.dim, dtype=dtype ), "coord_decoder": nn.ModuleDict( { "fc1": nn.Linear( config.region.dim, config.region.inner_dim, dtype=dtype ), "fc2": nn.Linear( config.region.inner_dim, config.region.coord_out_dim, dtype=dtype, ), } ), "size_encoder": nn.Linear( config.region.size_feat_dim, config.region.dim, dtype=dtype ), "size_decoder": nn.ModuleDict( { "fc1": nn.Linear( config.region.dim, config.region.inner_dim, dtype=dtype ), "fc2": nn.Linear( config.region.inner_dim, config.region.size_out_dim, dtype=dtype, ), } ), } ) self.region.coord_features = nn.Parameter( torch.empty(config.region.coord_feat_dim // 2, 1, dtype=dtype).T ) self.region.size_features = nn.Parameter( torch.empty(config.region.size_feat_dim // 2, 2, dtype=dtype).T ) self.ops = { "vision_encoder": vision_encoder, "vision_projection": vision_projection, "prefill": prefill, "decode_one_token": decode_one_token, } @property def device(self): return self.vision.pos_emb.device def compile(self): self.ops["vision_encoder"] = torch.compile( self.ops["vision_encoder"], fullgraph=True ) # Need to figure out how to mark the 'reconstructed' input shape as dynamic # self.ops["vision_projection"] = torch.compile( # self.ops["vision_projection"], fullgraph=True # ) self.ops["prefill"] = torch.compile(self.ops["prefill"], fullgraph=True) self.ops["decode_one_token"] = torch.compile( self.ops["decode_one_token"], fullgraph=True ) def _run_vision_encoder(self, image: Image.Image) -> torch.Tensor: all_crops, tiling = prepare_crops(image, self.config.vision, device=self.device) torch._dynamo.mark_dynamic(all_crops, 0) outputs = self.ops["vision_encoder"](all_crops, self.vision, self.config.vision) global_features = outputs[0] local_features = outputs[1:].view( -1, self.config.vision.enc_n_layers, self.config.vision.enc_n_layers, self.config.vision.enc_dim, ) reconstructed = reconstruct_from_crops( local_features, tiling, patch_size=1, overlap_margin=self.config.vision.overlap_margin, ) return self.ops["vision_projection"]( global_features, reconstructed, self.vision, self.config.vision ) def encode_image(self, image: Union[Image.Image, EncodedImage]) -> EncodedImage: if isinstance(image, EncodedImage): return image elif not isinstance(image, Image.Image): raise ValueError("image must be a PIL Image or EncodedImage") # Run through text model in addition to the vision encoder, to minimize # re-computation if multiple queries are performed on this image. kv_cache = torch.zeros( self.config.text.n_layers, 2, # k, v 1, # batch size self.config.text.n_heads, self.config.text.max_context, # static cache self.config.text.dim // self.config.text.n_heads, # head dim device=self.device, dtype=torch.float16, ) with torch.no_grad(): img_emb = self._run_vision_encoder(image) bos_emb = text_encoder( torch.tensor([[self.config.tokenizer.bos_id]], device=self.device), self.text, ) inputs_embeds = torch.cat([bos_emb, img_emb[None]], dim=1) self.ops["prefill"](inputs_embeds, kv_cache, 0, self.text, self.config.text) return EncodedImage(pos=inputs_embeds.size(1), kv_cache=kv_cache) def _prefill_prompt( self, kv_cache: torch.Tensor, prompt_tokens: torch.Tensor, pos: int ): with torch.no_grad(): prompt_emb = text_encoder(prompt_tokens, self.text) hidden = self.ops["prefill"]( prompt_emb, kv_cache, pos, self.text, self.config.text ) logits = lm_head(hidden, self.text) next_token = torch.argmax(logits, dim=-1) pos = pos + prompt_emb.size(1) return logits, hidden, next_token, pos def _generate_text( self, prompt_tokens: torch.Tensor, kv_cache: torch.Tensor, pos: int, max_tokens: int, ): kv_cache = kv_cache.clone() _, _, next_token, pos = self._prefill_prompt(kv_cache, prompt_tokens, pos) def generator(next_token, pos): generated_tokens = 0 while ( next_token_id := next_token.item() ) != self.config.tokenizer.eos_id and generated_tokens < max_tokens: yield self.tokenizer.decode([next_token_id]) with torch.no_grad(): next_emb = text_encoder(next_token, self.text) logits, _, kv_cache_update = self.ops["decode_one_token"]( next_emb, kv_cache, pos, self.text, self.config.text ) kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = ( kv_cache_update ) pos += 1 next_token = torch.argmax(logits, dim=-1) generated_tokens += 1 return generator(next_token, pos) def query( self, image: Union[Image.Image, EncodedImage], question: str, stream: bool = False, settings: Optional[SamplingSettings] = None, ): if self.config.tokenizer.templates["query"] is None: raise NotImplementedError("Model does not support querying.") image = self.encode_image(image) prompt_tokens = torch.tensor( [ self.config.tokenizer.templates["query"]["prefix"] + self.tokenizer.encode(question).ids + self.config.tokenizer.templates["query"]["suffix"] ], device=self.device, ) max_tokens = DEFAULT_MAX_TOKENS if settings: max_tokens = settings.get("max_tokens", DEFAULT_MAX_TOKENS) def generator(): for token in self._generate_text( prompt_tokens, image.kv_cache, image.pos, max_tokens ): yield token if stream: return {"answer": generator()} else: return {"answer": "".join(list(generator()))} def caption( self, image: Union[Image.Image, EncodedImage], length: Literal["normal", "short"] = "normal", stream: bool = False, settings: Optional[SamplingSettings] = None, ): if self.config.tokenizer.templates["caption"] is None: raise NotImplementedError("Model does not support captioning.") if length not in self.config.tokenizer.templates["caption"]: raise ValueError(f"Model does not support caption length '{length}'.") image = self.encode_image(image) prompt_tokens = torch.tensor( [self.config.tokenizer.templates["caption"][length]], device=self.device ) max_tokens = DEFAULT_MAX_TOKENS if settings: max_tokens = settings.get("max_tokens", DEFAULT_MAX_TOKENS) def generator(): for token in self._generate_text( prompt_tokens, image.kv_cache, image.pos, max_tokens ): yield token if stream: return {"caption": generator()} else: return {"caption": "".join(list(generator()))} def _generate_points( self, hidden: torch.Tensor, kv_cache: torch.Tensor, next_token: torch.Tensor, pos: int, include_size: bool = True, max_points: int = 50, ): out = [] with torch.no_grad(): while ( next_token.item() != self.config.tokenizer.eos_id and len(out) < max_points ): x_logits = decode_coordinate(hidden, self.region) x_center = torch.argmax(x_logits, dim=-1) / x_logits.size(-1) next_emb = encode_coordinate( x_center.to(dtype=x_logits.dtype), self.region ) # Decode y-coordinate _, hidden, kv_cache_update = self.ops["decode_one_token"]( next_emb, kv_cache, pos, self.text, self.config.text ) kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = ( kv_cache_update ) pos += 1 y_logits = decode_coordinate(hidden, self.region) y_center = torch.argmax(y_logits, dim=-1) / y_logits.size(-1) next_emb = encode_coordinate( y_center.to(dtype=y_logits.dtype), self.region ) # Decode size if include_size: logits, hidden, kv_cache_update = self.ops["decode_one_token"]( next_emb, kv_cache, pos, self.text, self.config.text ) kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = ( kv_cache_update ) pos += 1 size_logits = decode_size(hidden, self.region) w = torch.argmax(size_logits[0], dim=-1) / size_logits.size(-1) h = torch.argmax(size_logits[1], dim=-1) / size_logits.size(-1) next_emb = encode_size( torch.tensor( [w, h], device=self.device, dtype=size_logits.dtype ), self.region, )[None] # Add object out.append( { "x_min": x_center.item() - w.item() / 2, "y_min": y_center.item() - h.item() / 2, "x_max": x_center.item() + w.item() / 2, "y_max": y_center.item() + h.item() / 2, } ) else: out.append({"x": x_center.item(), "y": y_center.item()}) # Decode next token (x-coordinate, or eos) logits, hidden, kv_cache_update = self.ops["decode_one_token"]( next_emb, kv_cache, pos, self.text, self.config.text ) kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = ( kv_cache_update ) pos += 1 next_token = torch.argmax(logits, dim=-1) return out def detect( self, image: Union[Image.Image, EncodedImage], object: str, settings: Optional[SamplingSettings] = None, ): if self.config.tokenizer.templates["detect"] is None: raise NotImplementedError("Model does not support object detection.") image = self.encode_image(image) prompt_tokens = torch.tensor( [ self.config.tokenizer.templates["detect"]["prefix"] + self.tokenizer.encode(object).ids + self.config.tokenizer.templates["detect"]["suffix"] ], device=self.device, ) kv_cache = image.kv_cache.clone() _, hidden, next_token, pos = self._prefill_prompt( kv_cache, prompt_tokens, image.pos ) hidden = hidden[:, -1:, :] objects = self._generate_points( hidden, kv_cache, next_token, pos, include_size=True, max_points=50 ) return {"objects": objects} def point( self, image: Union[Image.Image, EncodedImage], object: str, settings: Optional[SamplingSettings] = None, ): if self.config.tokenizer.templates["point"] is None: raise NotImplementedError("Model does not support pointing.") image = self.encode_image(image) prompt_tokens = torch.tensor( [ self.config.tokenizer.templates["point"]["prefix"] + self.tokenizer.encode(object).ids + self.config.tokenizer.templates["point"]["suffix"] ], device=self.device, ) kv_cache = image.kv_cache.clone() _, hidden, next_token, pos = self._prefill_prompt( kv_cache, prompt_tokens, image.pos ) hidden = hidden[:, -1:, :] objects = self._generate_points( hidden, kv_cache, next_token, pos, include_size=False, max_points=50 ) return {"points": objects} def _detect_gaze( self, image: EncodedImage, source: Tuple[float, float], force_detect: bool = False, ): with torch.no_grad(): before_emb = text_encoder( torch.tensor( [self.tokenizer.encode("\n\nPoint:").ids], device=self.device ), self.text, ) after_emb = text_encoder( torch.tensor( [self.tokenizer.encode(" gaze\n\n").ids], device=self.device ), self.text, ) x_emb = encode_coordinate( torch.tensor([[[source[0]]]], device=self.device, dtype=torch.float16), self.region, ) y_emb = encode_coordinate( torch.tensor([[[source[1]]]], device=self.device, dtype=torch.float16), self.region, ) prompt_emb = torch.cat([before_emb, x_emb, y_emb, after_emb], dim=1) kv_cache = image.kv_cache.clone() hidden = self.ops["prefill"]( prompt_emb, kv_cache, image.pos, self.text, self.config.text ) logits = lm_head(hidden, self.text) next_token = torch.argmax(logits, dim=-1) pos = image.pos + prompt_emb.size(1) hidden = hidden[:, -1:, :] if force_detect: next_token = torch.tensor([[0]], device=self.device) if next_token.item() == self.config.tokenizer.eos_id: return None gaze = self._generate_points( hidden, kv_cache, next_token, pos, include_size=False, max_points=1 ) return gaze[0] def detect_gaze( self, image: Union[Image.Image, EncodedImage], eye: Optional[Tuple[float, float]] = None, face: Optional[Dict[str, float]] = None, unstable_settings: Dict[str, Any] = {}, ): if "force_detect" in unstable_settings: force_detect = unstable_settings["force_detect"] else: force_detect = False if "prioritize_accuracy" in unstable_settings: prioritize_accuracy = unstable_settings["prioritize_accuracy"] else: prioritize_accuracy = False if not prioritize_accuracy: if eye is None: raise ValueError("eye must be provided when prioritize_accuracy=False") image = self.encode_image(image) return {"gaze": self._detect_gaze(image, eye, force_detect=force_detect)} else: if ( not isinstance(image, Image.Image) and "flip_enc_img" not in unstable_settings ): raise ValueError( "image must be a PIL Image when prioritize_accuracy=True, " "or flip_enc_img must be provided" ) if face is None: raise ValueError("face must be provided when prioritize_accuracy=True") encoded_image = self.encode_image(image) if ( isinstance(image, Image.Image) and "flip_enc_img" not in unstable_settings ): flipped_pil = image.copy() flipped_pil = flipped_pil.transpose(method=Image.FLIP_LEFT_RIGHT) encoded_flipped_image = self.encode_image(flipped_pil) else: encoded_flipped_image = unstable_settings["flip_enc_img"] N = 10 detections = [ self._detect_gaze( encoded_image, ( random.uniform(face["x_min"], face["x_max"]), random.uniform(face["y_min"], face["y_max"]), ), force_detect=force_detect, ) for _ in range(N) ] detections = [ (gaze["x"], gaze["y"]) for gaze in detections if gaze is not None ] flipped_detections = [ self._detect_gaze( encoded_flipped_image, ( 1 - random.uniform(face["x_min"], face["x_max"]), random.uniform(face["y_min"], face["y_max"]), ), force_detect=force_detect, ) for _ in range(N) ] detections.extend( [ (1 - gaze["x"], gaze["y"]) for gaze in flipped_detections if gaze is not None ] ) if len(detections) < N: return {"gaze": None} detections = remove_outlier_points(detections) mean_gaze = ( sum(gaze[0] for gaze in detections) / len(detections), sum(gaze[1] for gaze in detections) / len(detections), ) return {"gaze": {"x": mean_gaze[0], "y": mean_gaze[1]}}