tyfeng1997 commited on
Commit
965365d
·
verified ·
1 Parent(s): 70044fd

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-1.5B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2.5-1.5B-Open-R1-Distill
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-1.5B-Open-R1-Distill
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="tyfeng1997/Qwen2.5-1.5B-Open-R1-Distill", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bofeng1997-ty/huggingface/runs/u6kvpc0n)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.15.0.dev0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 6.955833048956928e+17,
3
+ "train_loss": 0.8332233665607593,
4
+ "train_runtime": 5910.2876,
5
+ "train_samples": 16610,
6
+ "train_samples_per_second": 3.659,
7
+ "train_steps_per_second": 0.114
8
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-1.5B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 21,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0.dev0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151936
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0.dev0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50e315471741fda1b862abd07df84ee482088d1dd6b16d4399d720abfd500b3e
3
+ size 3087467144
special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|im_end|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 6.955833048956928e+17,
3
+ "train_loss": 0.8332233665607593,
4
+ "train_runtime": 5910.2876,
5
+ "train_samples": 16610,
6
+ "train_samples_per_second": 3.659,
7
+ "train_steps_per_second": 0.114
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9988901220865705,
5
+ "eval_steps": 100,
6
+ "global_step": 675,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.007399186089530152,
13
+ "grad_norm": 2.6875,
14
+ "learning_rate": 1.4705882352941177e-06,
15
+ "loss": 1.0889,
16
+ "mean_token_accuracy": 0.7125268097914184,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.014798372179060304,
21
+ "grad_norm": 2.484375,
22
+ "learning_rate": 2.9411764705882355e-06,
23
+ "loss": 1.0968,
24
+ "mean_token_accuracy": 0.7092195795245753,
25
+ "step": 10
26
+ },
27
+ {
28
+ "epoch": 0.022197558268590455,
29
+ "grad_norm": 2.09375,
30
+ "learning_rate": 4.411764705882353e-06,
31
+ "loss": 1.0965,
32
+ "mean_token_accuracy": 0.7104868683246498,
33
+ "step": 15
34
+ },
35
+ {
36
+ "epoch": 0.029596744358120607,
37
+ "grad_norm": 1.765625,
38
+ "learning_rate": 5.882352941176471e-06,
39
+ "loss": 1.0875,
40
+ "mean_token_accuracy": 0.7121812060803538,
41
+ "step": 20
42
+ },
43
+ {
44
+ "epoch": 0.03699593044765076,
45
+ "grad_norm": 1.6484375,
46
+ "learning_rate": 7.352941176470589e-06,
47
+ "loss": 1.04,
48
+ "mean_token_accuracy": 0.7208183657495422,
49
+ "step": 25
50
+ },
51
+ {
52
+ "epoch": 0.04439511653718091,
53
+ "grad_norm": 1.2109375,
54
+ "learning_rate": 8.823529411764707e-06,
55
+ "loss": 1.0122,
56
+ "mean_token_accuracy": 0.7265688926848266,
57
+ "step": 30
58
+ },
59
+ {
60
+ "epoch": 0.05179430262671106,
61
+ "grad_norm": 1.0390625,
62
+ "learning_rate": 1.0294117647058823e-05,
63
+ "loss": 1.0279,
64
+ "mean_token_accuracy": 0.7183522238886227,
65
+ "step": 35
66
+ },
67
+ {
68
+ "epoch": 0.059193488716241215,
69
+ "grad_norm": 0.84375,
70
+ "learning_rate": 1.1764705882352942e-05,
71
+ "loss": 0.986,
72
+ "mean_token_accuracy": 0.7276039645930008,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 0.06659267480577137,
77
+ "grad_norm": 0.84765625,
78
+ "learning_rate": 1.323529411764706e-05,
79
+ "loss": 0.9595,
80
+ "mean_token_accuracy": 0.7319873327389332,
81
+ "step": 45
82
+ },
83
+ {
84
+ "epoch": 0.07399186089530152,
85
+ "grad_norm": 0.828125,
86
+ "learning_rate": 1.4705882352941179e-05,
87
+ "loss": 0.9236,
88
+ "mean_token_accuracy": 0.7399783950265117,
89
+ "step": 50
90
+ },
91
+ {
92
+ "epoch": 0.08139104698483167,
93
+ "grad_norm": 0.73828125,
94
+ "learning_rate": 1.6176470588235296e-05,
95
+ "loss": 0.9343,
96
+ "mean_token_accuracy": 0.7348416256431625,
97
+ "step": 55
98
+ },
99
+ {
100
+ "epoch": 0.08879023307436182,
101
+ "grad_norm": 0.7109375,
102
+ "learning_rate": 1.7647058823529414e-05,
103
+ "loss": 0.9254,
104
+ "mean_token_accuracy": 0.7385374999726644,
105
+ "step": 60
106
+ },
107
+ {
108
+ "epoch": 0.09618941916389197,
109
+ "grad_norm": 0.6953125,
110
+ "learning_rate": 1.911764705882353e-05,
111
+ "loss": 0.9063,
112
+ "mean_token_accuracy": 0.741349676895516,
113
+ "step": 65
114
+ },
115
+ {
116
+ "epoch": 0.10358860525342212,
117
+ "grad_norm": 0.63671875,
118
+ "learning_rate": 1.9999464266898485e-05,
119
+ "loss": 0.8649,
120
+ "mean_token_accuracy": 0.7525428841059651,
121
+ "step": 70
122
+ },
123
+ {
124
+ "epoch": 0.11098779134295228,
125
+ "grad_norm": 0.671875,
126
+ "learning_rate": 1.9993437928712977e-05,
127
+ "loss": 0.8608,
128
+ "mean_token_accuracy": 0.7526847546264352,
129
+ "step": 75
130
+ },
131
+ {
132
+ "epoch": 0.11838697743248243,
133
+ "grad_norm": 0.69921875,
134
+ "learning_rate": 1.998071963486563e-05,
135
+ "loss": 0.862,
136
+ "mean_token_accuracy": 0.7518434589905822,
137
+ "step": 80
138
+ },
139
+ {
140
+ "epoch": 0.12578616352201258,
141
+ "grad_norm": 0.6640625,
142
+ "learning_rate": 1.9961317901970953e-05,
143
+ "loss": 0.8682,
144
+ "mean_token_accuracy": 0.7497427297772263,
145
+ "step": 85
146
+ },
147
+ {
148
+ "epoch": 0.13318534961154274,
149
+ "grad_norm": 0.6328125,
150
+ "learning_rate": 1.993524572210807e-05,
151
+ "loss": 0.8585,
152
+ "mean_token_accuracy": 0.7517300278547048,
153
+ "step": 90
154
+ },
155
+ {
156
+ "epoch": 0.14058453570107288,
157
+ "grad_norm": 0.78515625,
158
+ "learning_rate": 1.990252055412077e-05,
159
+ "loss": 0.8397,
160
+ "mean_token_accuracy": 0.7565752356334744,
161
+ "step": 95
162
+ },
163
+ {
164
+ "epoch": 0.14798372179060304,
165
+ "grad_norm": 0.66796875,
166
+ "learning_rate": 1.9863164311926433e-05,
167
+ "loss": 0.8532,
168
+ "mean_token_accuracy": 0.7522277875945481,
169
+ "step": 100
170
+ },
171
+ {
172
+ "epoch": 0.14798372179060304,
173
+ "eval_loss": 0.881839394569397,
174
+ "eval_mean_token_accuracy": 0.7427007802750561,
175
+ "eval_runtime": 10.0645,
176
+ "eval_samples_per_second": 12.817,
177
+ "eval_steps_per_second": 3.279,
178
+ "step": 100
179
+ },
180
+ {
181
+ "epoch": 0.15538290788013318,
182
+ "grad_norm": 0.65625,
183
+ "learning_rate": 1.981720334984174e-05,
184
+ "loss": 0.8617,
185
+ "mean_token_accuracy": 0.750136008754142,
186
+ "step": 105
187
+ },
188
+ {
189
+ "epoch": 0.16278209396966334,
190
+ "grad_norm": 0.6953125,
191
+ "learning_rate": 1.9764668444934853e-05,
192
+ "loss": 0.8502,
193
+ "mean_token_accuracy": 0.7535309864229933,
194
+ "step": 110
195
+ },
196
+ {
197
+ "epoch": 0.1701812800591935,
198
+ "grad_norm": 0.6328125,
199
+ "learning_rate": 1.970559477641606e-05,
200
+ "loss": 0.838,
201
+ "mean_token_accuracy": 0.7564989407619159,
202
+ "step": 115
203
+ },
204
+ {
205
+ "epoch": 0.17758046614872364,
206
+ "grad_norm": 0.6796875,
207
+ "learning_rate": 1.9640021902080523e-05,
208
+ "loss": 0.8519,
209
+ "mean_token_accuracy": 0.7530597966776801,
210
+ "step": 120
211
+ },
212
+ {
213
+ "epoch": 0.1849796522382538,
214
+ "grad_norm": 0.64453125,
215
+ "learning_rate": 1.9567993731818988e-05,
216
+ "loss": 0.8262,
217
+ "mean_token_accuracy": 0.7578173164655706,
218
+ "step": 125
219
+ },
220
+ {
221
+ "epoch": 0.19237883832778394,
222
+ "grad_norm": 0.65234375,
223
+ "learning_rate": 1.9489558498214197e-05,
224
+ "loss": 0.8448,
225
+ "mean_token_accuracy": 0.7532515140156795,
226
+ "step": 130
227
+ },
228
+ {
229
+ "epoch": 0.1997780244173141,
230
+ "grad_norm": 0.63671875,
231
+ "learning_rate": 1.9404768724242667e-05,
232
+ "loss": 0.829,
233
+ "mean_token_accuracy": 0.7569637453783504,
234
+ "step": 135
235
+ },
236
+ {
237
+ "epoch": 0.20717721050684423,
238
+ "grad_norm": 0.671875,
239
+ "learning_rate": 1.931368118810346e-05,
240
+ "loss": 0.8496,
241
+ "mean_token_accuracy": 0.7527783892103799,
242
+ "step": 140
243
+ },
244
+ {
245
+ "epoch": 0.2145763965963744,
246
+ "grad_norm": 0.63671875,
247
+ "learning_rate": 1.92163568851975e-05,
248
+ "loss": 0.8098,
249
+ "mean_token_accuracy": 0.763142965097514,
250
+ "step": 145
251
+ },
252
+ {
253
+ "epoch": 0.22197558268590456,
254
+ "grad_norm": 0.6171875,
255
+ "learning_rate": 1.911286098728296e-05,
256
+ "loss": 0.8311,
257
+ "mean_token_accuracy": 0.7559205422083072,
258
+ "step": 150
259
+ },
260
+ {
261
+ "epoch": 0.2293747687754347,
262
+ "grad_norm": 0.65234375,
263
+ "learning_rate": 1.900326279883392e-05,
264
+ "loss": 0.821,
265
+ "mean_token_accuracy": 0.7603623572543372,
266
+ "step": 155
267
+ },
268
+ {
269
+ "epoch": 0.23677395486496486,
270
+ "grad_norm": 0.64453125,
271
+ "learning_rate": 1.8887635710631716e-05,
272
+ "loss": 0.8415,
273
+ "mean_token_accuracy": 0.7539029955264388,
274
+ "step": 160
275
+ },
276
+ {
277
+ "epoch": 0.244173140954495,
278
+ "grad_norm": 0.640625,
279
+ "learning_rate": 1.8766057150619865e-05,
280
+ "loss": 0.8194,
281
+ "mean_token_accuracy": 0.7596525949906076,
282
+ "step": 165
283
+ },
284
+ {
285
+ "epoch": 0.25157232704402516,
286
+ "grad_norm": 0.65625,
287
+ "learning_rate": 1.8638608532055635e-05,
288
+ "loss": 0.8499,
289
+ "mean_token_accuracy": 0.7507423157399387,
290
+ "step": 170
291
+ },
292
+ {
293
+ "epoch": 0.2589715131335553,
294
+ "grad_norm": 0.66015625,
295
+ "learning_rate": 1.8505375198992856e-05,
296
+ "loss": 0.7937,
297
+ "mean_token_accuracy": 0.7674289833041605,
298
+ "step": 175
299
+ },
300
+ {
301
+ "epoch": 0.2663706992230855,
302
+ "grad_norm": 0.67578125,
303
+ "learning_rate": 1.836644636913258e-05,
304
+ "loss": 0.8262,
305
+ "mean_token_accuracy": 0.7575025006251728,
306
+ "step": 180
307
+ },
308
+ {
309
+ "epoch": 0.2737698853126156,
310
+ "grad_norm": 0.65234375,
311
+ "learning_rate": 1.8221915074079764e-05,
312
+ "loss": 0.8255,
313
+ "mean_token_accuracy": 0.7579806168918822,
314
+ "step": 185
315
+ },
316
+ {
317
+ "epoch": 0.28116907140214575,
318
+ "grad_norm": 0.60546875,
319
+ "learning_rate": 1.8071878097046064e-05,
320
+ "loss": 0.8127,
321
+ "mean_token_accuracy": 0.7618292969891692,
322
+ "step": 190
323
+ },
324
+ {
325
+ "epoch": 0.2885682574916759,
326
+ "grad_norm": 0.61328125,
327
+ "learning_rate": 1.7916435908040413e-05,
328
+ "loss": 0.82,
329
+ "mean_token_accuracy": 0.7576332974355414,
330
+ "step": 195
331
+ },
332
+ {
333
+ "epoch": 0.2959674435812061,
334
+ "grad_norm": 0.6640625,
335
+ "learning_rate": 1.7755692596590778e-05,
336
+ "loss": 0.8239,
337
+ "mean_token_accuracy": 0.7585159504436572,
338
+ "step": 200
339
+ },
340
+ {
341
+ "epoch": 0.2959674435812061,
342
+ "eval_loss": 0.8516884446144104,
343
+ "eval_mean_token_accuracy": 0.7486177381969057,
344
+ "eval_runtime": 10.1332,
345
+ "eval_samples_per_second": 12.73,
346
+ "eval_steps_per_second": 3.257,
347
+ "step": 200
348
+ },
349
+ {
350
+ "epoch": 0.30336662967073624,
351
+ "grad_norm": 0.640625,
352
+ "learning_rate": 1.7589755802042188e-05,
353
+ "loss": 0.8333,
354
+ "mean_token_accuracy": 0.755667467160024,
355
+ "step": 205
356
+ },
357
+ {
358
+ "epoch": 0.31076581576026635,
359
+ "grad_norm": 0.6484375,
360
+ "learning_rate": 1.7418736641477636e-05,
361
+ "loss": 0.8076,
362
+ "mean_token_accuracy": 0.7622239278052717,
363
+ "step": 210
364
+ },
365
+ {
366
+ "epoch": 0.3181650018497965,
367
+ "grad_norm": 0.6640625,
368
+ "learning_rate": 1.7242749635310222e-05,
369
+ "loss": 0.8258,
370
+ "mean_token_accuracy": 0.7563272214656106,
371
+ "step": 215
372
+ },
373
+ {
374
+ "epoch": 0.3255641879393267,
375
+ "grad_norm": 0.625,
376
+ "learning_rate": 1.7061912630596252e-05,
377
+ "loss": 0.808,
378
+ "mean_token_accuracy": 0.7622835124784312,
379
+ "step": 220
380
+ },
381
+ {
382
+ "epoch": 0.33296337402885684,
383
+ "grad_norm": 0.6015625,
384
+ "learning_rate": 1.6876346722120747e-05,
385
+ "loss": 0.8376,
386
+ "mean_token_accuracy": 0.7545975719101803,
387
+ "step": 225
388
+ },
389
+ {
390
+ "epoch": 0.340362560118387,
391
+ "grad_norm": 0.64453125,
392
+ "learning_rate": 1.6686176171308125e-05,
393
+ "loss": 0.8189,
394
+ "mean_token_accuracy": 0.7589312621258506,
395
+ "step": 230
396
+ },
397
+ {
398
+ "epoch": 0.3477617462079171,
399
+ "grad_norm": 0.62109375,
400
+ "learning_rate": 1.6491528323012412e-05,
401
+ "loss": 0.8323,
402
+ "mean_token_accuracy": 0.7551743560659628,
403
+ "step": 235
404
+ },
405
+ {
406
+ "epoch": 0.3551609322974473,
407
+ "grad_norm": 0.65625,
408
+ "learning_rate": 1.6292533520242663e-05,
409
+ "loss": 0.8379,
410
+ "mean_token_accuracy": 0.7538607275907119,
411
+ "step": 240
412
+ },
413
+ {
414
+ "epoch": 0.36256011838697744,
415
+ "grad_norm": 0.625,
416
+ "learning_rate": 1.6089325016880737e-05,
417
+ "loss": 0.8343,
418
+ "mean_token_accuracy": 0.7548026042130938,
419
+ "step": 245
420
+ },
421
+ {
422
+ "epoch": 0.3699593044765076,
423
+ "grad_norm": 0.64453125,
424
+ "learning_rate": 1.588203888844982e-05,
425
+ "loss": 0.8046,
426
+ "mean_token_accuracy": 0.761888865074052,
427
+ "step": 250
428
+ },
429
+ {
430
+ "epoch": 0.37735849056603776,
431
+ "grad_norm": 0.67578125,
432
+ "learning_rate": 1.5670813940993504e-05,
433
+ "loss": 0.8276,
434
+ "mean_token_accuracy": 0.7575759893795071,
435
+ "step": 255
436
+ },
437
+ {
438
+ "epoch": 0.38475767665556787,
439
+ "grad_norm": 0.64453125,
440
+ "learning_rate": 1.5455791618126407e-05,
441
+ "loss": 0.8104,
442
+ "mean_token_accuracy": 0.760050321922496,
443
+ "step": 260
444
+ },
445
+ {
446
+ "epoch": 0.39215686274509803,
447
+ "grad_norm": 0.6328125,
448
+ "learning_rate": 1.5237115906318565e-05,
449
+ "loss": 0.8353,
450
+ "mean_token_accuracy": 0.7543203597663848,
451
+ "step": 265
452
+ },
453
+ {
454
+ "epoch": 0.3995560488346282,
455
+ "grad_norm": 0.6484375,
456
+ "learning_rate": 1.5014933238477069e-05,
457
+ "loss": 0.8199,
458
+ "mean_token_accuracy": 0.7586679634011008,
459
+ "step": 270
460
+ },
461
+ {
462
+ "epoch": 0.40695523492415836,
463
+ "grad_norm": 0.68359375,
464
+ "learning_rate": 1.4789392395889468e-05,
465
+ "loss": 0.7905,
466
+ "mean_token_accuracy": 0.7671787987556499,
467
+ "step": 275
468
+ },
469
+ {
470
+ "epoch": 0.41435442101368847,
471
+ "grad_norm": 0.671875,
472
+ "learning_rate": 1.4560644408594602e-05,
473
+ "loss": 0.8026,
474
+ "mean_token_accuracy": 0.7626319857465419,
475
+ "step": 280
476
+ },
477
+ {
478
+ "epoch": 0.42175360710321863,
479
+ "grad_norm": 0.62890625,
480
+ "learning_rate": 1.432884245424761e-05,
481
+ "loss": 0.8075,
482
+ "mean_token_accuracy": 0.7607413128108793,
483
+ "step": 285
484
+ },
485
+ {
486
+ "epoch": 0.4291527931927488,
487
+ "grad_norm": 0.64453125,
488
+ "learning_rate": 1.4094141755546816e-05,
489
+ "loss": 0.8187,
490
+ "mean_token_accuracy": 0.7589368335212423,
491
+ "step": 290
492
+ },
493
+ {
494
+ "epoch": 0.43655197928227896,
495
+ "grad_norm": 0.65234375,
496
+ "learning_rate": 1.3856699476291176e-05,
497
+ "loss": 0.8192,
498
+ "mean_token_accuracy": 0.7591432161550824,
499
+ "step": 295
500
+ },
501
+ {
502
+ "epoch": 0.4439511653718091,
503
+ "grad_norm": 0.59375,
504
+ "learning_rate": 1.3616674616137902e-05,
505
+ "loss": 0.8041,
506
+ "mean_token_accuracy": 0.7629979478188578,
507
+ "step": 300
508
+ },
509
+ {
510
+ "epoch": 0.4439511653718091,
511
+ "eval_loss": 0.8405057191848755,
512
+ "eval_mean_token_accuracy": 0.7510059552661275,
513
+ "eval_runtime": 10.064,
514
+ "eval_samples_per_second": 12.818,
515
+ "eval_steps_per_second": 3.279,
516
+ "step": 300
517
+ },
518
+ {
519
+ "epoch": 0.4513503514613392,
520
+ "grad_norm": 0.57421875,
521
+ "learning_rate": 1.3374227904130724e-05,
522
+ "loss": 0.7818,
523
+ "mean_token_accuracy": 0.7675685003663603,
524
+ "step": 305
525
+ },
526
+ {
527
+ "epoch": 0.4587495375508694,
528
+ "grad_norm": 0.6171875,
529
+ "learning_rate": 1.3129521691070108e-05,
530
+ "loss": 0.8151,
531
+ "mean_token_accuracy": 0.760285985649892,
532
+ "step": 310
533
+ },
534
+ {
535
+ "epoch": 0.46614872364039955,
536
+ "grad_norm": 0.609375,
537
+ "learning_rate": 1.2882719840797473e-05,
538
+ "loss": 0.8498,
539
+ "mean_token_accuracy": 0.7496549590236475,
540
+ "step": 315
541
+ },
542
+ {
543
+ "epoch": 0.4735479097299297,
544
+ "grad_norm": 0.62109375,
545
+ "learning_rate": 1.2633987620466229e-05,
546
+ "loss": 0.8157,
547
+ "mean_token_accuracy": 0.7595543121832427,
548
+ "step": 320
549
+ },
550
+ {
551
+ "epoch": 0.4809470958194599,
552
+ "grad_norm": 0.6171875,
553
+ "learning_rate": 1.2383491589873122e-05,
554
+ "loss": 0.814,
555
+ "mean_token_accuracy": 0.76055377418819,
556
+ "step": 325
557
+ },
558
+ {
559
+ "epoch": 0.48834628190899,
560
+ "grad_norm": 0.63671875,
561
+ "learning_rate": 1.213139948992394e-05,
562
+ "loss": 0.8059,
563
+ "mean_token_accuracy": 0.762236279277402,
564
+ "step": 330
565
+ },
566
+ {
567
+ "epoch": 0.49574546799852015,
568
+ "grad_norm": 0.640625,
569
+ "learning_rate": 1.187788013030837e-05,
570
+ "loss": 0.8162,
571
+ "mean_token_accuracy": 0.7582854817990154,
572
+ "step": 335
573
+ },
574
+ {
575
+ "epoch": 0.5031446540880503,
576
+ "grad_norm": 0.69140625,
577
+ "learning_rate": 1.1623103276459086e-05,
578
+ "loss": 0.8289,
579
+ "mean_token_accuracy": 0.7563345353903344,
580
+ "step": 340
581
+ },
582
+ {
583
+ "epoch": 0.5105438401775805,
584
+ "grad_norm": 0.6015625,
585
+ "learning_rate": 1.1367239535870913e-05,
586
+ "loss": 0.8231,
587
+ "mean_token_accuracy": 0.7566890854096104,
588
+ "step": 345
589
+ },
590
+ {
591
+ "epoch": 0.5179430262671106,
592
+ "grad_norm": 0.6640625,
593
+ "learning_rate": 1.1110460243856051e-05,
594
+ "loss": 0.812,
595
+ "mean_token_accuracy": 0.7598966873380734,
596
+ "step": 350
597
+ },
598
+ {
599
+ "epoch": 0.5253422123566408,
600
+ "grad_norm": 0.69140625,
601
+ "learning_rate": 1.085293734881197e-05,
602
+ "loss": 0.8096,
603
+ "mean_token_accuracy": 0.7606711478473765,
604
+ "step": 355
605
+ },
606
+ {
607
+ "epoch": 0.532741398446171,
608
+ "grad_norm": 0.59765625,
609
+ "learning_rate": 1.0594843297078736e-05,
610
+ "loss": 0.7989,
611
+ "mean_token_accuracy": 0.7642786153243144,
612
+ "step": 360
613
+ },
614
+ {
615
+ "epoch": 0.540140584535701,
616
+ "grad_norm": 0.6015625,
617
+ "learning_rate": 1.0336350917462925e-05,
618
+ "loss": 0.8056,
619
+ "mean_token_accuracy": 0.762532315275268,
620
+ "step": 365
621
+ },
622
+ {
623
+ "epoch": 0.5475397706252312,
624
+ "grad_norm": 0.61328125,
625
+ "learning_rate": 1.0077633305505402e-05,
626
+ "loss": 0.816,
627
+ "mean_token_accuracy": 0.7593420425977142,
628
+ "step": 370
629
+ },
630
+ {
631
+ "epoch": 0.5549389567147613,
632
+ "grad_norm": 0.61328125,
633
+ "learning_rate": 9.818863707570476e-06,
634
+ "loss": 0.8133,
635
+ "mean_token_accuracy": 0.7596080670861823,
636
+ "step": 375
637
+ },
638
+ {
639
+ "epoch": 0.5623381428042915,
640
+ "grad_norm": 0.640625,
641
+ "learning_rate": 9.560215404834094e-06,
642
+ "loss": 0.7919,
643
+ "mean_token_accuracy": 0.7654578983098163,
644
+ "step": 380
645
+ },
646
+ {
647
+ "epoch": 0.5697373288938217,
648
+ "grad_norm": 0.5703125,
649
+ "learning_rate": 9.30186159724869e-06,
650
+ "loss": 0.7816,
651
+ "mean_token_accuracy": 0.7673245483787857,
652
+ "step": 385
653
+ },
654
+ {
655
+ "epoch": 0.5771365149833518,
656
+ "grad_norm": 0.6015625,
657
+ "learning_rate": 9.043975287562443e-06,
658
+ "loss": 0.7992,
659
+ "mean_token_accuracy": 0.7633096954215505,
660
+ "step": 390
661
+ },
662
+ {
663
+ "epoch": 0.584535701072882,
664
+ "grad_norm": 0.61328125,
665
+ "learning_rate": 8.786729165470584e-06,
666
+ "loss": 0.7998,
667
+ "mean_token_accuracy": 0.7631908193656377,
668
+ "step": 395
669
+ },
670
+ {
671
+ "epoch": 0.5919348871624122,
672
+ "grad_norm": 0.6171875,
673
+ "learning_rate": 8.530295491976338e-06,
674
+ "loss": 0.8126,
675
+ "mean_token_accuracy": 0.7598241210604321,
676
+ "step": 400
677
+ },
678
+ {
679
+ "epoch": 0.5919348871624122,
680
+ "eval_loss": 0.8360142707824707,
681
+ "eval_mean_token_accuracy": 0.7517478887246488,
682
+ "eval_runtime": 10.03,
683
+ "eval_samples_per_second": 12.861,
684
+ "eval_steps_per_second": 3.29,
685
+ "step": 400
686
+ },
687
+ {
688
+ "epoch": 0.5993340732519423,
689
+ "grad_norm": 0.6328125,
690
+ "learning_rate": 8.274845984038916e-06,
691
+ "loss": 0.7969,
692
+ "mean_token_accuracy": 0.7641834896121918,
693
+ "step": 405
694
+ },
695
+ {
696
+ "epoch": 0.6067332593414725,
697
+ "grad_norm": 0.640625,
698
+ "learning_rate": 8.020551699585843e-06,
699
+ "loss": 0.7947,
700
+ "mean_token_accuracy": 0.7647268750819378,
701
+ "step": 410
702
+ },
703
+ {
704
+ "epoch": 0.6141324454310025,
705
+ "grad_norm": 0.6015625,
706
+ "learning_rate": 7.76758292296659e-06,
707
+ "loss": 0.8189,
708
+ "mean_token_accuracy": 0.7590364557167671,
709
+ "step": 415
710
+ },
711
+ {
712
+ "epoch": 0.6215316315205327,
713
+ "grad_norm": 0.62109375,
714
+ "learning_rate": 7.5161090509242005e-06,
715
+ "loss": 0.7909,
716
+ "mean_token_accuracy": 0.7652537080968896,
717
+ "step": 420
718
+ },
719
+ {
720
+ "epoch": 0.6289308176100629,
721
+ "grad_norm": 0.6171875,
722
+ "learning_rate": 7.2662984791613186e-06,
723
+ "loss": 0.8315,
724
+ "mean_token_accuracy": 0.7542246739417179,
725
+ "step": 425
726
+ },
727
+ {
728
+ "epoch": 0.636330003699593,
729
+ "grad_norm": 0.640625,
730
+ "learning_rate": 7.01831848957653e-06,
731
+ "loss": 0.8369,
732
+ "mean_token_accuracy": 0.7534853977571128,
733
+ "step": 430
734
+ },
735
+ {
736
+ "epoch": 0.6437291897891232,
737
+ "grad_norm": 0.6171875,
738
+ "learning_rate": 6.772335138246548e-06,
739
+ "loss": 0.805,
740
+ "mean_token_accuracy": 0.762450890454431,
741
+ "step": 435
742
+ },
743
+ {
744
+ "epoch": 0.6511283758786534,
745
+ "grad_norm": 0.55859375,
746
+ "learning_rate": 6.528513144229256e-06,
747
+ "loss": 0.8104,
748
+ "mean_token_accuracy": 0.7604143982203317,
749
+ "step": 440
750
+ },
751
+ {
752
+ "epoch": 0.6585275619681835,
753
+ "grad_norm": 0.61328125,
754
+ "learning_rate": 6.287015779262064e-06,
755
+ "loss": 0.8269,
756
+ "mean_token_accuracy": 0.7558118968129715,
757
+ "step": 445
758
+ },
759
+ {
760
+ "epoch": 0.6659267480577137,
761
+ "grad_norm": 0.65234375,
762
+ "learning_rate": 6.048004758429451e-06,
763
+ "loss": 0.809,
764
+ "mean_token_accuracy": 0.7604383536426794,
765
+ "step": 450
766
+ },
767
+ {
768
+ "epoch": 0.6733259341472438,
769
+ "grad_norm": 0.57421875,
770
+ "learning_rate": 5.811640131872867e-06,
771
+ "loss": 0.803,
772
+ "mean_token_accuracy": 0.7631231626902106,
773
+ "step": 455
774
+ },
775
+ {
776
+ "epoch": 0.680725120236774,
777
+ "grad_norm": 0.62109375,
778
+ "learning_rate": 5.578080177615575e-06,
779
+ "loss": 0.7905,
780
+ "mean_token_accuracy": 0.7664996560842343,
781
+ "step": 460
782
+ },
783
+ {
784
+ "epoch": 0.6881243063263041,
785
+ "grad_norm": 0.59765625,
786
+ "learning_rate": 5.347481295574141e-06,
787
+ "loss": 0.817,
788
+ "mean_token_accuracy": 0.7598457909368685,
789
+ "step": 465
790
+ },
791
+ {
792
+ "epoch": 0.6955234924158342,
793
+ "grad_norm": 0.5859375,
794
+ "learning_rate": 5.119997902827584e-06,
795
+ "loss": 0.7838,
796
+ "mean_token_accuracy": 0.7681530254729145,
797
+ "step": 470
798
+ },
799
+ {
800
+ "epoch": 0.7029226785053644,
801
+ "grad_norm": 0.59765625,
802
+ "learning_rate": 4.8957823302142916e-06,
803
+ "loss": 0.8152,
804
+ "mean_token_accuracy": 0.7589711080063637,
805
+ "step": 475
806
+ },
807
+ {
808
+ "epoch": 0.7103218645948945,
809
+ "grad_norm": 0.6328125,
810
+ "learning_rate": 4.674984720325961e-06,
811
+ "loss": 0.764,
812
+ "mean_token_accuracy": 0.7731734311479281,
813
+ "step": 480
814
+ },
815
+ {
816
+ "epoch": 0.7177210506844247,
817
+ "grad_norm": 0.59375,
818
+ "learning_rate": 4.457752926966888e-06,
819
+ "loss": 0.7956,
820
+ "mean_token_accuracy": 0.7651409385185983,
821
+ "step": 485
822
+ },
823
+ {
824
+ "epoch": 0.7251202367739549,
825
+ "grad_norm": 0.6015625,
826
+ "learning_rate": 4.244232416145839e-06,
827
+ "loss": 0.8124,
828
+ "mean_token_accuracy": 0.7599823785557752,
829
+ "step": 490
830
+ },
831
+ {
832
+ "epoch": 0.732519422863485,
833
+ "grad_norm": 0.609375,
834
+ "learning_rate": 4.0345661686669745e-06,
835
+ "loss": 0.8049,
836
+ "mean_token_accuracy": 0.7629141672631095,
837
+ "step": 495
838
+ },
839
+ {
840
+ "epoch": 0.7399186089530152,
841
+ "grad_norm": 0.6015625,
842
+ "learning_rate": 3.828894584384867e-06,
843
+ "loss": 0.8044,
844
+ "mean_token_accuracy": 0.7619363832608415,
845
+ "step": 500
846
+ },
847
+ {
848
+ "epoch": 0.7399186089530152,
849
+ "eval_loss": 0.8346704840660095,
850
+ "eval_mean_token_accuracy": 0.7520572347969028,
851
+ "eval_runtime": 10.0654,
852
+ "eval_samples_per_second": 12.816,
853
+ "eval_steps_per_second": 3.279,
854
+ "step": 500
855
+ },
856
+ {
857
+ "epoch": 0.7473177950425454,
858
+ "grad_norm": 0.58984375,
859
+ "learning_rate": 3.62735538818787e-06,
860
+ "loss": 0.8114,
861
+ "mean_token_accuracy": 0.7598190169187282,
862
+ "step": 505
863
+ },
864
+ {
865
+ "epoch": 0.7547169811320755,
866
+ "grad_norm": 0.68359375,
867
+ "learning_rate": 3.4300835377726904e-06,
868
+ "loss": 0.8084,
869
+ "mean_token_accuracy": 0.7615245232527742,
870
+ "step": 510
871
+ },
872
+ {
873
+ "epoch": 0.7621161672216056,
874
+ "grad_norm": 0.62890625,
875
+ "learning_rate": 3.2372111332720045e-06,
876
+ "loss": 0.8095,
877
+ "mean_token_accuracy": 0.7603961895824873,
878
+ "step": 515
879
+ },
880
+ {
881
+ "epoch": 0.7695153533111357,
882
+ "grad_norm": 0.59375,
883
+ "learning_rate": 3.048867328795588e-06,
884
+ "loss": 0.8042,
885
+ "mean_token_accuracy": 0.7623402252899881,
886
+ "step": 520
887
+ },
888
+ {
889
+ "epoch": 0.7769145394006659,
890
+ "grad_norm": 0.609375,
891
+ "learning_rate": 2.865178245944218e-06,
892
+ "loss": 0.8271,
893
+ "mean_token_accuracy": 0.7549774230762811,
894
+ "step": 525
895
+ },
896
+ {
897
+ "epoch": 0.7843137254901961,
898
+ "grad_norm": 0.65625,
899
+ "learning_rate": 2.686266889354211e-06,
900
+ "loss": 0.8194,
901
+ "mean_token_accuracy": 0.758641096847443,
902
+ "step": 530
903
+ },
904
+ {
905
+ "epoch": 0.7917129115797262,
906
+ "grad_norm": 0.62109375,
907
+ "learning_rate": 2.5122530643292274e-06,
908
+ "loss": 0.8073,
909
+ "mean_token_accuracy": 0.7621044001910408,
910
+ "step": 535
911
+ },
912
+ {
913
+ "epoch": 0.7991120976692564,
914
+ "grad_norm": 0.6015625,
915
+ "learning_rate": 2.3432532966144526e-06,
916
+ "loss": 0.8052,
917
+ "mean_token_accuracy": 0.7617640022033555,
918
+ "step": 540
919
+ },
920
+ {
921
+ "epoch": 0.8065112837587866,
922
+ "grad_norm": 0.625,
923
+ "learning_rate": 2.1793807543668857e-06,
924
+ "loss": 0.7953,
925
+ "mean_token_accuracy": 0.7650752920265742,
926
+ "step": 545
927
+ },
928
+ {
929
+ "epoch": 0.8139104698483167,
930
+ "grad_norm": 0.6640625,
931
+ "learning_rate": 2.0207451723739633e-06,
932
+ "loss": 0.8164,
933
+ "mean_token_accuracy": 0.7590261856765735,
934
+ "step": 550
935
+ },
936
+ {
937
+ "epoch": 0.8213096559378469,
938
+ "grad_norm": 0.62890625,
939
+ "learning_rate": 1.8674527785713247e-06,
940
+ "loss": 0.8165,
941
+ "mean_token_accuracy": 0.7591550173948883,
942
+ "step": 555
943
+ },
944
+ {
945
+ "epoch": 0.8287088420273769,
946
+ "grad_norm": 0.625,
947
+ "learning_rate": 1.7196062229088606e-06,
948
+ "loss": 0.7974,
949
+ "mean_token_accuracy": 0.7655606222993903,
950
+ "step": 560
951
+ },
952
+ {
953
+ "epoch": 0.8361080281169071,
954
+ "grad_norm": 0.640625,
955
+ "learning_rate": 1.577304508612717e-06,
956
+ "loss": 0.8188,
957
+ "mean_token_accuracy": 0.7584306394217425,
958
+ "step": 565
959
+ },
960
+ {
961
+ "epoch": 0.8435072142064373,
962
+ "grad_norm": 0.6015625,
963
+ "learning_rate": 1.4406429258892762e-06,
964
+ "loss": 0.7987,
965
+ "mean_token_accuracy": 0.7638594187341397,
966
+ "step": 570
967
+ },
968
+ {
969
+ "epoch": 0.8509064002959674,
970
+ "grad_norm": 0.63671875,
971
+ "learning_rate": 1.3097129881154936e-06,
972
+ "loss": 0.8031,
973
+ "mean_token_accuracy": 0.7634847826956948,
974
+ "step": 575
975
+ },
976
+ {
977
+ "epoch": 0.8583055863854976,
978
+ "grad_norm": 0.73046875,
979
+ "learning_rate": 1.1846023705583442e-06,
980
+ "loss": 0.8056,
981
+ "mean_token_accuracy": 0.761539622884949,
982
+ "step": 580
983
+ },
984
+ {
985
+ "epoch": 0.8657047724750278,
986
+ "grad_norm": 0.62109375,
987
+ "learning_rate": 1.065394851664394e-06,
988
+ "loss": 0.8049,
989
+ "mean_token_accuracy": 0.7617745412749592,
990
+ "step": 585
991
+ },
992
+ {
993
+ "epoch": 0.8731039585645579,
994
+ "grad_norm": 0.69921875,
995
+ "learning_rate": 9.521702569588199e-07,
996
+ "loss": 0.7982,
997
+ "mean_token_accuracy": 0.7640860770793427,
998
+ "step": 590
999
+ },
1000
+ {
1001
+ "epoch": 0.8805031446540881,
1002
+ "grad_norm": 0.56640625,
1003
+ "learning_rate": 8.450044055914497e-07,
1004
+ "loss": 0.7844,
1005
+ "mean_token_accuracy": 0.7681888388454224,
1006
+ "step": 595
1007
+ },
1008
+ {
1009
+ "epoch": 0.8879023307436182,
1010
+ "grad_norm": 0.65625,
1011
+ "learning_rate": 7.439690595656013e-07,
1012
+ "loss": 0.8012,
1013
+ "mean_token_accuracy": 0.7632812679282144,
1014
+ "step": 600
1015
+ },
1016
+ {
1017
+ "epoch": 0.8879023307436182,
1018
+ "eval_loss": 0.8345086574554443,
1019
+ "eval_mean_token_accuracy": 0.7520681013468922,
1020
+ "eval_runtime": 10.0917,
1021
+ "eval_samples_per_second": 12.783,
1022
+ "eval_steps_per_second": 3.27,
1023
+ "step": 600
1024
+ },
1025
+ {
1026
+ "epoch": 0.8953015168331484,
1027
+ "grad_norm": 0.60546875,
1028
+ "learning_rate": 6.491318756837417e-07,
1029
+ "loss": 0.8106,
1030
+ "mean_token_accuracy": 0.7612582206970016,
1031
+ "step": 605
1032
+ },
1033
+ {
1034
+ "epoch": 0.9027007029226785,
1035
+ "grad_norm": 0.62890625,
1036
+ "learning_rate": 5.605563602421149e-07,
1037
+ "loss": 0.7911,
1038
+ "mean_token_accuracy": 0.7655656508689518,
1039
+ "step": 610
1040
+ },
1041
+ {
1042
+ "epoch": 0.9100998890122086,
1043
+ "grad_norm": 0.65625,
1044
+ "learning_rate": 4.783018265047179e-07,
1045
+ "loss": 0.7894,
1046
+ "mean_token_accuracy": 0.7661501144437494,
1047
+ "step": 615
1048
+ },
1049
+ {
1050
+ "epoch": 0.9174990751017388,
1051
+ "grad_norm": 0.62890625,
1052
+ "learning_rate": 4.024233549850509e-07,
1053
+ "loss": 0.7596,
1054
+ "mean_token_accuracy": 0.7753985135806752,
1055
+ "step": 620
1056
+ },
1057
+ {
1058
+ "epoch": 0.9248982611912689,
1059
+ "grad_norm": 0.62890625,
1060
+ "learning_rate": 3.329717565622825e-07,
1061
+ "loss": 0.8101,
1062
+ "mean_token_accuracy": 0.761036204015425,
1063
+ "step": 625
1064
+ },
1065
+ {
1066
+ "epoch": 0.9322974472807991,
1067
+ "grad_norm": 0.6484375,
1068
+ "learning_rate": 2.6999353845651113e-07,
1069
+ "loss": 0.792,
1070
+ "mean_token_accuracy": 0.7660421700585999,
1071
+ "step": 630
1072
+ },
1073
+ {
1074
+ "epoch": 0.9396966333703293,
1075
+ "grad_norm": 0.61328125,
1076
+ "learning_rate": 2.1353087308590314e-07,
1077
+ "loss": 0.7908,
1078
+ "mean_token_accuracy": 0.7660176922625442,
1079
+ "step": 635
1080
+ },
1081
+ {
1082
+ "epoch": 0.9470958194598594,
1083
+ "grad_norm": 0.58984375,
1084
+ "learning_rate": 1.6362156982656085e-07,
1085
+ "loss": 0.8095,
1086
+ "mean_token_accuracy": 0.7614060535470332,
1087
+ "step": 640
1088
+ },
1089
+ {
1090
+ "epoch": 0.9544950055493896,
1091
+ "grad_norm": 0.625,
1092
+ "learning_rate": 1.2029904969404482e-07,
1093
+ "loss": 0.789,
1094
+ "mean_token_accuracy": 0.7670061354894862,
1095
+ "step": 645
1096
+ },
1097
+ {
1098
+ "epoch": 0.9618941916389198,
1099
+ "grad_norm": 0.62109375,
1100
+ "learning_rate": 8.359232296349163e-08,
1101
+ "loss": 0.7812,
1102
+ "mean_token_accuracy": 0.7682785852402595,
1103
+ "step": 650
1104
+ },
1105
+ {
1106
+ "epoch": 0.9692933777284499,
1107
+ "grad_norm": 0.5859375,
1108
+ "learning_rate": 5.3525969743324356e-08,
1109
+ "loss": 0.8167,
1110
+ "mean_token_accuracy": 0.7597556839292564,
1111
+ "step": 655
1112
+ },
1113
+ {
1114
+ "epoch": 0.97669256381798,
1115
+ "grad_norm": 0.578125,
1116
+ "learning_rate": 3.012012351554017e-08,
1117
+ "loss": 0.7868,
1118
+ "mean_token_accuracy": 0.766402887185296,
1119
+ "step": 660
1120
+ },
1121
+ {
1122
+ "epoch": 0.9840917499075101,
1123
+ "grad_norm": 0.66015625,
1124
+ "learning_rate": 1.3390457653639221e-08,
1125
+ "loss": 0.8048,
1126
+ "mean_token_accuracy": 0.7627934682349665,
1127
+ "step": 665
1128
+ },
1129
+ {
1130
+ "epoch": 0.9914909359970403,
1131
+ "grad_norm": 0.66015625,
1132
+ "learning_rate": 3.3481749271768726e-09,
1133
+ "loss": 0.7971,
1134
+ "mean_token_accuracy": 0.7637863893274557,
1135
+ "step": 670
1136
+ },
1137
+ {
1138
+ "epoch": 0.9988901220865705,
1139
+ "grad_norm": 0.66015625,
1140
+ "learning_rate": 0.0,
1141
+ "loss": 0.8261,
1142
+ "mean_token_accuracy": 0.7560044389949291,
1143
+ "step": 675
1144
+ },
1145
+ {
1146
+ "epoch": 0.9988901220865705,
1147
+ "step": 675,
1148
+ "total_flos": 6.955833048956928e+17,
1149
+ "train_loss": 0.8332233665607593,
1150
+ "train_runtime": 5910.2876,
1151
+ "train_samples_per_second": 3.659,
1152
+ "train_steps_per_second": 0.114
1153
+ }
1154
+ ],
1155
+ "logging_steps": 5,
1156
+ "max_steps": 675,
1157
+ "num_input_tokens_seen": 0,
1158
+ "num_train_epochs": 1,
1159
+ "save_steps": 500,
1160
+ "stateful_callbacks": {
1161
+ "TrainerControl": {
1162
+ "args": {
1163
+ "should_epoch_stop": false,
1164
+ "should_evaluate": false,
1165
+ "should_log": false,
1166
+ "should_save": false,
1167
+ "should_training_stop": false
1168
+ },
1169
+ "attributes": {}
1170
+ }
1171
+ },
1172
+ "total_flos": 6.955833048956928e+17,
1173
+ "train_batch_size": 4,
1174
+ "trial_name": null,
1175
+ "trial_params": null
1176
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca480cca08c980f684263ceeed9d413ea62ac19d89ccd00d99458485610b9809
3
+ size 6008
vocab.json ADDED
The diff for this file is too large to render. See raw diff