torinriley commited on
Commit
8d76254
·
verified ·
1 Parent(s): 1d624af

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +38 -38
handler.py CHANGED
@@ -12,6 +12,7 @@ from model import build_transformer
12
 
13
  warnings.simplefilter("ignore", category=FutureWarning)
14
 
 
15
  class EndpointHandler:
16
  def __init__(self, path: str = ""):
17
  """
@@ -48,51 +49,50 @@ class EndpointHandler:
48
  self.model.load_state_dict(checkpoint["model_state_dict"])
49
  self.model.eval()
50
 
51
- def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
52
- """
53
- Process the incoming request and return the translation.
54
- """
55
- try:
56
- inputs = data.get("inputs", "")
57
- if not inputs:
58
- return [{"error": "No 'inputs' provided in request"}]
59
-
60
- source = self.tokenizer_src.encode(inputs)
61
- source = torch.cat([
62
- torch.tensor([self.tokenizer_src.token_to_id("[SOS]")], dtype=torch.int64),
63
- torch.tensor(source.ids, dtype=torch.int64),
64
- torch.tensor([self.tokenizer_src.token_to_id("[EOS]")], dtype=torch.int64),
65
- torch.tensor([self.tokenizer_src.token_to_id("[PAD]")] * (350 - len(source.ids) - 2), dtype=torch.int64)
66
- ], dim=0).to(self.device)
67
 
68
- source_mask = (source != self.tokenizer_src.token_to_id("[PAD]")).unsqueeze(0).unsqueeze(1).int().to(self.device)
69
- encoder_output = self.model.encode(source, source_mask)
 
 
 
 
 
70
 
71
- decoder_input = torch.empty(1, 1).fill_(self.tokenizer_tgt.token_to_id("[SOS]")).type_as(source).to(self.device)
72
- predicted_words = []
73
 
74
- while decoder_input.size(1) < 350:
75
- decoder_mask = torch.triu(
76
- torch.ones((1, decoder_input.size(1), decoder_input.size(1))),
77
- diagonal=1
78
- ).type(torch.int).type_as(source_mask).to(self.device)
79
 
80
- out = self.model.decode(encoder_output, source_mask, decoder_input, decoder_mask)
81
- prob = self.model.project(out[:, -1])
82
- _, next_word = torch.max(prob, dim=1)
 
 
83
 
84
- decoder_input = torch.cat(
85
- [decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(self.device)], dim=1)
 
86
 
87
- decoded_word = self.tokenizer_tgt.decode([next_word.item()])
88
- if next_word == self.tokenizer_tgt.token_to_id("[EOS]"):
89
- break
90
 
91
- predicted_words.append(decoded_word)
 
 
92
 
93
- predicted_translation = " ".join(predicted_words).replace("[EOS]", "").strip()
94
 
95
- return [{"translation": predicted_translation}]
96
- except Exception as e:
97
- return [{"error": str(e)}]
98
 
 
 
 
 
12
 
13
  warnings.simplefilter("ignore", category=FutureWarning)
14
 
15
+
16
  class EndpointHandler:
17
  def __init__(self, path: str = ""):
18
  """
 
49
  self.model.load_state_dict(checkpoint["model_state_dict"])
50
  self.model.eval()
51
 
52
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
53
+ """
54
+ Process the incoming request and return the translation.
55
+ """
56
+ try:
57
+ inputs = data.get("inputs", "")
58
+ if not inputs:
59
+ return [{"error": "No 'inputs' provided in request"}]
 
 
 
 
 
 
 
 
60
 
61
+ source = self.tokenizer_src.encode(inputs)
62
+ source = torch.cat([
63
+ torch.tensor([self.tokenizer_src.token_to_id("[SOS]")], dtype=torch.int64),
64
+ torch.tensor(source.ids, dtype=torch.int64),
65
+ torch.tensor([self.tokenizer_src.token_to_id("[EOS]")], dtype=torch.int64),
66
+ torch.tensor([self.tokenizer_src.token_to_id("[PAD]")] * (350 - len(source.ids) - 2), dtype=torch.int64)
67
+ ], dim=0).to(self.device)
68
 
69
+ source_mask = (source != self.tokenizer_src.token_to_id("[PAD]")).unsqueeze(0).unsqueeze(1).int().to(self.device)
70
+ encoder_output = self.model.encode(source, source_mask)
71
 
72
+ decoder_input = torch.empty(1, 1).fill_(self.tokenizer_tgt.token_to_id("[SOS]")).type_as(source).to(self.device)
73
+ predicted_words = []
 
 
 
74
 
75
+ while decoder_input.size(1) < 350:
76
+ decoder_mask = torch.triu(
77
+ torch.ones((1, decoder_input.size(1), decoder_input.size(1))),
78
+ diagonal=1
79
+ ).type(torch.int).type_as(source_mask).to(self.device)
80
 
81
+ out = self.model.decode(encoder_output, source_mask, decoder_input, decoder_mask)
82
+ prob = self.model.project(out[:, -1])
83
+ _, next_word = torch.max(prob, dim=1)
84
 
85
+ decoder_input = torch.cat(
86
+ [decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(self.device)], dim=1)
 
87
 
88
+ decoded_word = self.tokenizer_tgt.decode([next_word.item()])
89
+ if next_word == self.tokenizer_tgt.token_to_id("[EOS]"):
90
+ break
91
 
92
+ predicted_words.append(decoded_word)
93
 
94
+ predicted_translation = " ".join(predicted_words).replace("[EOS]", "").strip()
 
 
95
 
96
+ return [{"translation": predicted_translation}]
97
+ except Exception as e:
98
+ return [{"error": str(e)}]