torinriley
commited on
Update handler.py
Browse files- handler.py +38 -38
handler.py
CHANGED
@@ -12,6 +12,7 @@ from model import build_transformer
|
|
12 |
|
13 |
warnings.simplefilter("ignore", category=FutureWarning)
|
14 |
|
|
|
15 |
class EndpointHandler:
|
16 |
def __init__(self, path: str = ""):
|
17 |
"""
|
@@ -48,51 +49,50 @@ class EndpointHandler:
|
|
48 |
self.model.load_state_dict(checkpoint["model_state_dict"])
|
49 |
self.model.eval()
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
source = self.tokenizer_src.encode(inputs)
|
61 |
-
source = torch.cat([
|
62 |
-
torch.tensor([self.tokenizer_src.token_to_id("[SOS]")], dtype=torch.int64),
|
63 |
-
torch.tensor(source.ids, dtype=torch.int64),
|
64 |
-
torch.tensor([self.tokenizer_src.token_to_id("[EOS]")], dtype=torch.int64),
|
65 |
-
torch.tensor([self.tokenizer_src.token_to_id("[PAD]")] * (350 - len(source.ids) - 2), dtype=torch.int64)
|
66 |
-
], dim=0).to(self.device)
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
torch.ones((1, decoder_input.size(1), decoder_input.size(1))),
|
77 |
-
diagonal=1
|
78 |
-
).type(torch.int).type_as(source_mask).to(self.device)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
break
|
90 |
|
91 |
-
|
|
|
|
|
92 |
|
93 |
-
|
94 |
|
95 |
-
|
96 |
-
except Exception as e:
|
97 |
-
return [{"error": str(e)}]
|
98 |
|
|
|
|
|
|
|
|
12 |
|
13 |
warnings.simplefilter("ignore", category=FutureWarning)
|
14 |
|
15 |
+
|
16 |
class EndpointHandler:
|
17 |
def __init__(self, path: str = ""):
|
18 |
"""
|
|
|
49 |
self.model.load_state_dict(checkpoint["model_state_dict"])
|
50 |
self.model.eval()
|
51 |
|
52 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
53 |
+
"""
|
54 |
+
Process the incoming request and return the translation.
|
55 |
+
"""
|
56 |
+
try:
|
57 |
+
inputs = data.get("inputs", "")
|
58 |
+
if not inputs:
|
59 |
+
return [{"error": "No 'inputs' provided in request"}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
source = self.tokenizer_src.encode(inputs)
|
62 |
+
source = torch.cat([
|
63 |
+
torch.tensor([self.tokenizer_src.token_to_id("[SOS]")], dtype=torch.int64),
|
64 |
+
torch.tensor(source.ids, dtype=torch.int64),
|
65 |
+
torch.tensor([self.tokenizer_src.token_to_id("[EOS]")], dtype=torch.int64),
|
66 |
+
torch.tensor([self.tokenizer_src.token_to_id("[PAD]")] * (350 - len(source.ids) - 2), dtype=torch.int64)
|
67 |
+
], dim=0).to(self.device)
|
68 |
|
69 |
+
source_mask = (source != self.tokenizer_src.token_to_id("[PAD]")).unsqueeze(0).unsqueeze(1).int().to(self.device)
|
70 |
+
encoder_output = self.model.encode(source, source_mask)
|
71 |
|
72 |
+
decoder_input = torch.empty(1, 1).fill_(self.tokenizer_tgt.token_to_id("[SOS]")).type_as(source).to(self.device)
|
73 |
+
predicted_words = []
|
|
|
|
|
|
|
74 |
|
75 |
+
while decoder_input.size(1) < 350:
|
76 |
+
decoder_mask = torch.triu(
|
77 |
+
torch.ones((1, decoder_input.size(1), decoder_input.size(1))),
|
78 |
+
diagonal=1
|
79 |
+
).type(torch.int).type_as(source_mask).to(self.device)
|
80 |
|
81 |
+
out = self.model.decode(encoder_output, source_mask, decoder_input, decoder_mask)
|
82 |
+
prob = self.model.project(out[:, -1])
|
83 |
+
_, next_word = torch.max(prob, dim=1)
|
84 |
|
85 |
+
decoder_input = torch.cat(
|
86 |
+
[decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(self.device)], dim=1)
|
|
|
87 |
|
88 |
+
decoded_word = self.tokenizer_tgt.decode([next_word.item()])
|
89 |
+
if next_word == self.tokenizer_tgt.token_to_id("[EOS]"):
|
90 |
+
break
|
91 |
|
92 |
+
predicted_words.append(decoded_word)
|
93 |
|
94 |
+
predicted_translation = " ".join(predicted_words).replace("[EOS]", "").strip()
|
|
|
|
|
95 |
|
96 |
+
return [{"translation": predicted_translation}]
|
97 |
+
except Exception as e:
|
98 |
+
return [{"error": str(e)}]
|