torinriley commited on
Commit
30ad7c6
·
verified ·
1 Parent(s): 9a224f0

Upload model.py

Browse files
Files changed (1) hide show
  1. model.py +204 -0
model.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import math
4
+
5
+ class LayerNormalization(nn.Module):
6
+ def __init__(self, features: int, eps: float = 1e-6) -> None:
7
+ super().__init__()
8
+ self.eps = eps
9
+ self.alpha = nn.Parameter(torch.ones(features))
10
+ self.bias = nn.Parameter(torch.zeros(features))
11
+
12
+ def forward(self, x):
13
+ mean = x.mean(dim=-1, keepdim=True)
14
+ std = x.std(dim=-1, keepdim=True)
15
+ return self.alpha * (x - mean) / (std + self.eps) + self.bias
16
+
17
+ class FeedForwardBlock(nn.Module):
18
+ def __init__(self, d_model: int, d_ff: int, dropout: float) -> None:
19
+ super().__init__()
20
+ self.fc1 = nn.Linear(d_model, d_ff)
21
+ self.dropout = nn.Dropout(dropout)
22
+ self.fc2 = nn.Linear(d_ff, d_model)
23
+
24
+ def forward(self, x):
25
+ return self.fc2(self.dropout(torch.relu(self.fc1(x))))
26
+
27
+ class InputEmbeddings(nn.Module):
28
+ def __init__(self, d_model: int, vocab_size: int) -> None:
29
+ super().__init__()
30
+ self.d_model = d_model
31
+ self.embedding = nn.Embedding(vocab_size, d_model)
32
+
33
+ def forward(self, x):
34
+ return self.embedding(x) * math.sqrt(self.d_model)
35
+
36
+ class PositionalEncoding(nn.Module):
37
+ def __init__(self, d_model: int, seq_len: int, dropout: float) -> None:
38
+ super().__init__()
39
+ self.dropout = nn.Dropout(dropout)
40
+ pe = torch.zeros(seq_len, d_model)
41
+ position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1)
42
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
43
+ pe[:, 0::2] = torch.sin(position * div_term)
44
+ pe[:, 1::2] = torch.cos(position * div_term)
45
+ pe = pe.unsqueeze(0)
46
+ self.register_buffer('pe', pe)
47
+
48
+ def forward(self, x):
49
+ x = x + self.pe[:, :x.shape[1], :].requires_grad_(False)
50
+ return self.dropout(x)
51
+
52
+ class ResidualConnection(nn.Module):
53
+ def __init__(self, features: int, dropout: float) -> None:
54
+ super().__init__()
55
+ self.dropout = nn.Dropout(dropout)
56
+ self.norm = LayerNormalization(features)
57
+
58
+ def forward(self, x, sublayer):
59
+ return x + self.dropout(sublayer(self.norm(x)))
60
+
61
+ class MultiHeadAttentionBlock(nn.Module):
62
+ def __init__(self, d_model: int, num_heads: int, dropout: float) -> None:
63
+ super().__init__()
64
+ self.num_heads = num_heads
65
+ self.d_k = d_model // num_heads
66
+ self.w_q = nn.Linear(d_model, d_model, bias=False)
67
+ self.w_k = nn.Linear(d_model, d_model, bias=False)
68
+ self.w_v = nn.Linear(d_model, d_model, bias=False)
69
+ self.w_o = nn.Linear(d_model, d_model, bias=False)
70
+ self.dropout = nn.Dropout(dropout)
71
+
72
+ @staticmethod
73
+ def attention(query, key, value, mask, dropout: nn.Dropout):
74
+ d_k = query.shape[-1]
75
+ scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k)
76
+ if mask is not None:
77
+ scores.masked_fill_(mask == 0, -1e9)
78
+ scores = scores.softmax(dim=-1)
79
+ if dropout is not None:
80
+ scores = dropout(scores)
81
+ return scores @ value, scores
82
+
83
+ def forward(self, q, k, v, mask):
84
+ query = self.w_q(q)
85
+ key = self.w_k(k)
86
+ value = self.w_v(v)
87
+ query = query.view(query.shape[0], query.shape[1], self.num_heads, self.d_k).transpose(1, 2)
88
+ key = key.view(key.shape[0], key.shape[1], self.num_heads, self.d_k).transpose(1, 2)
89
+ value = value.view(value.shape[0], value.shape[1], self.num_heads, self.d_k).transpose(1, 2)
90
+ x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout)
91
+ x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.num_heads * self.d_k)
92
+ return self.w_o(x)
93
+
94
+ class EncoderBlock(nn.Module):
95
+ def __init__(self, features: int, self_attention: MultiHeadAttentionBlock, feed_forward: FeedForwardBlock, dropout: float) -> None:
96
+ super().__init__()
97
+ self.self_attention = self_attention
98
+ self.feed_forward = feed_forward
99
+ self.residuals = nn.ModuleList([ResidualConnection(features, dropout) for _ in range(2)])
100
+
101
+ def forward(self, x, src_mask):
102
+ x = self.residuals[0](x, lambda x: self.self_attention(x, x, x, src_mask))
103
+ x = self.residuals[1](x, self.feed_forward)
104
+ return x
105
+
106
+ class Encoder(nn.Module):
107
+ def __init__(self, features: int, layers: nn.ModuleList) -> None:
108
+ super().__init__()
109
+ self.layers = layers
110
+ self.norm = LayerNormalization(features)
111
+
112
+ def forward(self, x, mask):
113
+ for layer in self.layers:
114
+ x = layer(x, mask)
115
+ return self.norm(x)
116
+
117
+ class DecoderBlock(nn.Module):
118
+ def __init__(self, features: int, self_attention: MultiHeadAttentionBlock, cross_attention: MultiHeadAttentionBlock, feed_forward: FeedForwardBlock, dropout: float) -> None:
119
+ super().__init__()
120
+ self.self_attention = self_attention
121
+ self.cross_attention = cross_attention
122
+ self.feed_forward = feed_forward
123
+ self.residuals = nn.ModuleList([ResidualConnection(features, dropout) for _ in range(3)])
124
+
125
+ def forward(self, x, encoder_output, src_mask, tgt_mask):
126
+ x = self.residuals[0](x, lambda x: self.self_attention(x, x, x, tgt_mask))
127
+ x = self.residuals[1](x, lambda x: self.cross_attention(x, encoder_output, encoder_output, src_mask))
128
+ x = self.residuals[2](x, self.feed_forward)
129
+ return x
130
+
131
+ class Decoder(nn.Module):
132
+ def __init__(self, features: int, layers: nn.ModuleList) -> None:
133
+ super().__init__()
134
+ self.layers = layers
135
+ self.norm = LayerNormalization(features)
136
+
137
+ def forward(self, x, encoder_output, src_mask, tgt_mask):
138
+ for layer in self.layers:
139
+ x = layer(x, encoder_output, src_mask, tgt_mask)
140
+ return self.norm(x)
141
+
142
+ class ProjectionLayer(nn.Module):
143
+ def __init__(self, d_model, vocab_size) -> None:
144
+ super().__init__()
145
+ self.proj = nn.Linear(d_model, vocab_size)
146
+
147
+ def forward(self, x) -> None:
148
+ return self.proj(x)
149
+
150
+ class Transformer(nn.Module):
151
+ def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: InputEmbeddings, tgt_embed: InputEmbeddings, src_pos: PositionalEncoding, tgt_pos: PositionalEncoding, projection_layer: ProjectionLayer) -> None:
152
+ super().__init__()
153
+ self.encoder = encoder
154
+ self.decoder = decoder
155
+ self.src_embed = src_embed
156
+ self.tgt_embed = tgt_embed
157
+ self.src_pos = src_pos
158
+ self.tgt_pos = tgt_pos
159
+ self.projection_layer = projection_layer
160
+
161
+ def encode(self, src, src_mask):
162
+ src = self.src_embed(src)
163
+ src = self.src_pos(src)
164
+ return self.encoder(src, src_mask)
165
+
166
+ def decode(self, encoder_output: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
167
+ tgt = self.tgt_embed(tgt)
168
+ tgt = self.tgt_pos(tgt)
169
+ return self.decoder(tgt, encoder_output, src_mask, tgt_mask)
170
+
171
+ def project(self, x):
172
+ return self.projection_layer(x)
173
+
174
+ def build_transformer(src_vocab_size: int, tgt_vocab_size: int, src_seq_len: int, tgt_seq_len: int, d_model: int = 512, num_layers: int = 6, num_heads: int = 8, dropout: float = 0.1, d_ff: int = 2048) -> Transformer:
175
+ src_embed = InputEmbeddings(d_model, src_vocab_size)
176
+ tgt_embed = InputEmbeddings(d_model, tgt_vocab_size)
177
+ src_pos = PositionalEncoding(d_model, src_seq_len, dropout)
178
+ tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout)
179
+
180
+ encoder_blocks = []
181
+ for _ in range(num_layers):
182
+ self_attention = MultiHeadAttentionBlock(d_model, num_heads, dropout)
183
+ feed_forward = FeedForwardBlock(d_model, d_ff, dropout)
184
+ encoder_block = EncoderBlock(d_model, self_attention, feed_forward, dropout)
185
+ encoder_blocks.append(encoder_block)
186
+
187
+ decoder_blocks = []
188
+ for _ in range(num_layers):
189
+ self_attention = MultiHeadAttentionBlock(d_model, num_heads, dropout)
190
+ cross_attention = MultiHeadAttentionBlock(d_model, num_heads, dropout)
191
+ feed_forward = FeedForwardBlock(d_model, d_ff, dropout)
192
+ decoder_block = DecoderBlock(d_model, self_attention, cross_attention, feed_forward, dropout)
193
+ decoder_blocks.append(decoder_block)
194
+
195
+ encoder = Encoder(d_model, nn.ModuleList(encoder_blocks))
196
+ decoder = Decoder(d_model, nn.ModuleList(decoder_blocks))
197
+ projection_layer = ProjectionLayer(d_model, tgt_vocab_size)
198
+ transformer = Transformer(encoder, decoder, src_embed, tgt_embed, src_pos, tgt_pos, projection_layer)
199
+
200
+ for p in transformer.parameters():
201
+ if p.dim() > 1:
202
+ nn.init.xavier_uniform_(p)
203
+
204
+ return transformer