tenacioustommy commited on
Commit
47b5143
·
verified ·
1 Parent(s): 140c310

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ model_name: Qwen2.5-3B-Open-R1-Distill
4
+ tags:
5
+ - generated_from_trainer
6
+ - trl
7
+ - sft
8
+ licence: license
9
+ ---
10
+
11
+ # Model Card for Qwen2.5-3B-Open-R1-Distill
12
+
13
+ This model is a fine-tuned version of [None](https://huggingface.co/None).
14
+ It has been trained using [TRL](https://github.com/huggingface/trl).
15
+
16
+ ## Quick start
17
+
18
+ ```python
19
+ from transformers import pipeline
20
+
21
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
22
+ generator = pipeline("text-generation", model="tenacioustommy/Qwen2.5-3B-Open-R1-Distill", device="cuda")
23
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
24
+ print(output["generated_text"])
25
+ ```
26
+
27
+ ## Training procedure
28
+
29
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tenacioustommy6/huggingface/runs/vjgnbopg)
30
+
31
+
32
+ This model was trained with SFT.
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.15.0.dev0
37
+ - Transformers: 4.49.0.dev0
38
+ - Pytorch: 2.5.1
39
+ - Datasets: 3.2.0
40
+ - Tokenizers: 0.21.0
41
+
42
+ ## Citations
43
+
44
+
45
+
46
+ Cite TRL as:
47
+
48
+ ```bibtex
49
+ @misc{vonwerra2022trl,
50
+ title = {{TRL: Transformer Reinforcement Learning}},
51
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
52
+ year = 2020,
53
+ journal = {GitHub repository},
54
+ publisher = {GitHub},
55
+ howpublished = {\url{https://github.com/huggingface/trl}}
56
+ }
57
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 128380330573824.0,
3
+ "train_loss": 0.7332075143001489,
4
+ "train_runtime": 1234.0886,
5
+ "train_samples": 16610,
6
+ "train_samples_per_second": 17.521,
7
+ "train_steps_per_second": 0.137
8
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/cpfs01/user/huangzihan/models/Qwen2.5-3B-Instruct/snapshots/aa8e72537993ba99e69dfaafa59ed015b17504d1",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2048,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 70,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 36,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0.dev0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151936
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0.dev0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:045637881e44c7a1ef11dbf43bf3ce8d65147e757b6774caa1ca2c017a979a1e
3
+ size 4957560304
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:159eb5ee2c98e1ed39f12b637fb035ed502f69f9a98a63d262fa0e7e8521fe0d
3
+ size 1214366696
model.safetensors.index.json ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6171877376
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.norm.weight": "model-00002-of-00002.safetensors"
440
+ }
441
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|im_end|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 128380330573824.0,
3
+ "train_loss": 0.7332075143001489,
4
+ "train_runtime": 1234.0886,
5
+ "train_samples": 16610,
6
+ "train_samples_per_second": 17.521,
7
+ "train_steps_per_second": 0.137
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 100,
6
+ "global_step": 169,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.005917159763313609,
13
+ "grad_norm": 5.048887351152406,
14
+ "learning_rate": 1.1764705882352942e-06,
15
+ "loss": 1.0795,
16
+ "mean_token_accuracy": 0.7206979429209666,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.011834319526627219,
21
+ "grad_norm": 4.879597464054353,
22
+ "learning_rate": 2.3529411764705885e-06,
23
+ "loss": 1.1029,
24
+ "mean_token_accuracy": 0.7117051311557141,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.01775147928994083,
29
+ "grad_norm": 4.657432447307512,
30
+ "learning_rate": 3.529411764705883e-06,
31
+ "loss": 1.0906,
32
+ "mean_token_accuracy": 0.7171718488582962,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.023668639053254437,
37
+ "grad_norm": 4.467351868935966,
38
+ "learning_rate": 4.705882352941177e-06,
39
+ "loss": 1.0718,
40
+ "mean_token_accuracy": 0.7218519479951946,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.029585798816568046,
45
+ "grad_norm": 3.7064015727740425,
46
+ "learning_rate": 5.882352941176471e-06,
47
+ "loss": 1.0701,
48
+ "mean_token_accuracy": 0.7191323254401871,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.03550295857988166,
53
+ "grad_norm": 2.382423991923031,
54
+ "learning_rate": 7.058823529411766e-06,
55
+ "loss": 1.0118,
56
+ "mean_token_accuracy": 0.7285496854387108,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.04142011834319527,
61
+ "grad_norm": 2.101237602674026,
62
+ "learning_rate": 8.23529411764706e-06,
63
+ "loss": 0.9682,
64
+ "mean_token_accuracy": 0.7363681597344438,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.047337278106508875,
69
+ "grad_norm": 2.015056074152268,
70
+ "learning_rate": 9.411764705882354e-06,
71
+ "loss": 1.0044,
72
+ "mean_token_accuracy": 0.7251941996166579,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.05325443786982249,
77
+ "grad_norm": 1.6355380376413269,
78
+ "learning_rate": 1.0588235294117648e-05,
79
+ "loss": 0.9629,
80
+ "mean_token_accuracy": 0.7324857047569558,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.05917159763313609,
85
+ "grad_norm": 1.7763113613059038,
86
+ "learning_rate": 1.1764705882352942e-05,
87
+ "loss": 0.9515,
88
+ "mean_token_accuracy": 0.7337997991969313,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.0650887573964497,
93
+ "grad_norm": 1.3969034500597064,
94
+ "learning_rate": 1.2941176470588238e-05,
95
+ "loss": 0.9259,
96
+ "mean_token_accuracy": 0.7387967799773972,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.07100591715976332,
101
+ "grad_norm": 0.953979333766809,
102
+ "learning_rate": 1.4117647058823532e-05,
103
+ "loss": 0.873,
104
+ "mean_token_accuracy": 0.7510249436735839,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.07692307692307693,
109
+ "grad_norm": 1.127863397786703,
110
+ "learning_rate": 1.5294117647058822e-05,
111
+ "loss": 0.8988,
112
+ "mean_token_accuracy": 0.7415024955395976,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.08284023668639054,
117
+ "grad_norm": 0.9273891062266637,
118
+ "learning_rate": 1.647058823529412e-05,
119
+ "loss": 0.8642,
120
+ "mean_token_accuracy": 0.750242238655049,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.08875739644970414,
125
+ "grad_norm": 0.8053975766192991,
126
+ "learning_rate": 1.7647058823529414e-05,
127
+ "loss": 0.8616,
128
+ "mean_token_accuracy": 0.7512058479268567,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.09467455621301775,
133
+ "grad_norm": 0.7333036953961584,
134
+ "learning_rate": 1.8823529411764708e-05,
135
+ "loss": 0.8414,
136
+ "mean_token_accuracy": 0.7541005429250093,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.10059171597633136,
141
+ "grad_norm": 0.6867367211047125,
142
+ "learning_rate": 2e-05,
143
+ "loss": 0.8218,
144
+ "mean_token_accuracy": 0.7606669951255678,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.10650887573964497,
149
+ "grad_norm": 0.7209527833538277,
150
+ "learning_rate": 1.9997864167879313e-05,
151
+ "loss": 0.7897,
152
+ "mean_token_accuracy": 0.7669743964292547,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.11242603550295859,
157
+ "grad_norm": 0.6903745592521859,
158
+ "learning_rate": 1.999145758387301e-05,
159
+ "loss": 0.7984,
160
+ "mean_token_accuracy": 0.7647671686022387,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.11834319526627218,
165
+ "grad_norm": 0.6167859283406073,
166
+ "learning_rate": 1.9980782984658682e-05,
167
+ "loss": 0.7898,
168
+ "mean_token_accuracy": 0.7661677740213927,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.1242603550295858,
173
+ "grad_norm": 0.6108563732156459,
174
+ "learning_rate": 1.99658449300667e-05,
175
+ "loss": 0.804,
176
+ "mean_token_accuracy": 0.7611782591111235,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.1301775147928994,
181
+ "grad_norm": 0.5746908311619029,
182
+ "learning_rate": 1.994664980113243e-05,
183
+ "loss": 0.7744,
184
+ "mean_token_accuracy": 0.7691396065844442,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.13609467455621302,
189
+ "grad_norm": 0.5345761647636947,
190
+ "learning_rate": 1.992320579737045e-05,
191
+ "loss": 0.7749,
192
+ "mean_token_accuracy": 0.7685584775159877,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.14201183431952663,
197
+ "grad_norm": 0.5299656484934693,
198
+ "learning_rate": 1.9895522933272028e-05,
199
+ "loss": 0.7621,
200
+ "mean_token_accuracy": 0.7722506630953709,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.14792899408284024,
205
+ "grad_norm": 0.63083763621396,
206
+ "learning_rate": 1.9863613034027224e-05,
207
+ "loss": 0.7868,
208
+ "mean_token_accuracy": 0.7644846690458883,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.15384615384615385,
213
+ "grad_norm": 0.4511582029139769,
214
+ "learning_rate": 1.9827489730473597e-05,
215
+ "loss": 0.7752,
216
+ "mean_token_accuracy": 0.7683559567285383,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.15976331360946747,
221
+ "grad_norm": 0.5080850847922778,
222
+ "learning_rate": 1.9787168453273546e-05,
223
+ "loss": 0.7903,
224
+ "mean_token_accuracy": 0.7631548471555147,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.16568047337278108,
229
+ "grad_norm": 0.417117734277003,
230
+ "learning_rate": 1.9742666426322877e-05,
231
+ "loss": 0.743,
232
+ "mean_token_accuracy": 0.7766788822768681,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.17159763313609466,
237
+ "grad_norm": 0.4254796366932393,
238
+ "learning_rate": 1.9694002659393306e-05,
239
+ "loss": 0.7702,
240
+ "mean_token_accuracy": 0.7695522126025716,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.17751479289940827,
245
+ "grad_norm": 0.41986449808823745,
246
+ "learning_rate": 1.9641197940012136e-05,
247
+ "loss": 0.7586,
248
+ "mean_token_accuracy": 0.7721289278577101,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.1834319526627219,
253
+ "grad_norm": 0.4695562943601462,
254
+ "learning_rate": 1.958427482458253e-05,
255
+ "loss": 0.7539,
256
+ "mean_token_accuracy": 0.7716929613553958,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.1893491124260355,
261
+ "grad_norm": 0.3921409409899768,
262
+ "learning_rate": 1.9523257628748148e-05,
263
+ "loss": 0.7568,
264
+ "mean_token_accuracy": 0.7717328096419696,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.1952662721893491,
269
+ "grad_norm": 0.4160967346901947,
270
+ "learning_rate": 1.9458172417006347e-05,
271
+ "loss": 0.7409,
272
+ "mean_token_accuracy": 0.7751419508476135,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.20118343195266272,
277
+ "grad_norm": 0.43718343180505526,
278
+ "learning_rate": 1.9389046991574298e-05,
279
+ "loss": 0.7344,
280
+ "mean_token_accuracy": 0.778526386835722,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.20710059171597633,
285
+ "grad_norm": 0.396451454218149,
286
+ "learning_rate": 1.9315910880512792e-05,
287
+ "loss": 0.7585,
288
+ "mean_token_accuracy": 0.7704364168416742,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.21301775147928995,
293
+ "grad_norm": 0.4531112283882146,
294
+ "learning_rate": 1.9238795325112867e-05,
295
+ "loss": 0.7255,
296
+ "mean_token_accuracy": 0.7800096489081426,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.21893491124260356,
301
+ "grad_norm": 0.4003679262358476,
302
+ "learning_rate": 1.9157733266550577e-05,
303
+ "loss": 0.7251,
304
+ "mean_token_accuracy": 0.779636766062183,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.22485207100591717,
309
+ "grad_norm": 0.4019998494369348,
310
+ "learning_rate": 1.9072759331815602e-05,
311
+ "loss": 0.7325,
312
+ "mean_token_accuracy": 0.7773937936524439,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.23076923076923078,
317
+ "grad_norm": 0.4247947978619282,
318
+ "learning_rate": 1.898390981891979e-05,
319
+ "loss": 0.7396,
320
+ "mean_token_accuracy": 0.7757475726810331,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.23668639053254437,
325
+ "grad_norm": 0.3801393695192698,
326
+ "learning_rate": 1.8891222681391853e-05,
327
+ "loss": 0.7422,
328
+ "mean_token_accuracy": 0.7750002370873404,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.24260355029585798,
333
+ "grad_norm": 0.37960651070834583,
334
+ "learning_rate": 1.879473751206489e-05,
335
+ "loss": 0.7159,
336
+ "mean_token_accuracy": 0.7815920659071619,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.2485207100591716,
341
+ "grad_norm": 0.4177406473529506,
342
+ "learning_rate": 1.869449552616367e-05,
343
+ "loss": 0.7583,
344
+ "mean_token_accuracy": 0.7707519109077099,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.25443786982248523,
349
+ "grad_norm": 0.36011706007184574,
350
+ "learning_rate": 1.8590539543698852e-05,
351
+ "loss": 0.7201,
352
+ "mean_token_accuracy": 0.7804437519430654,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.2603550295857988,
357
+ "grad_norm": 0.37037523132050293,
358
+ "learning_rate": 1.8482913971175737e-05,
359
+ "loss": 0.6911,
360
+ "mean_token_accuracy": 0.789738280938329,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.26627218934911245,
365
+ "grad_norm": 0.4354182756113773,
366
+ "learning_rate": 1.8371664782625287e-05,
367
+ "loss": 0.7426,
368
+ "mean_token_accuracy": 0.7737875964292505,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.27218934911242604,
373
+ "grad_norm": 0.38980814844589723,
374
+ "learning_rate": 1.825683949996556e-05,
375
+ "loss": 0.7399,
376
+ "mean_token_accuracy": 0.7748932065512412,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.2781065088757396,
381
+ "grad_norm": 0.39132094117790983,
382
+ "learning_rate": 1.813848717270195e-05,
383
+ "loss": 0.7008,
384
+ "mean_token_accuracy": 0.7860000963532652,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.28402366863905326,
389
+ "grad_norm": 0.38848469099488886,
390
+ "learning_rate": 1.8016658356974885e-05,
391
+ "loss": 0.7164,
392
+ "mean_token_accuracy": 0.7800342185812585,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.28994082840236685,
397
+ "grad_norm": 0.3636566412524122,
398
+ "learning_rate": 1.789140509396394e-05,
399
+ "loss": 0.7212,
400
+ "mean_token_accuracy": 0.7796801488922436,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.2958579881656805,
405
+ "grad_norm": 0.4246224936998959,
406
+ "learning_rate": 1.7762780887657576e-05,
407
+ "loss": 0.7319,
408
+ "mean_token_accuracy": 0.7770798628956391,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.30177514792899407,
413
+ "grad_norm": 0.35464674247563077,
414
+ "learning_rate": 1.7630840681998068e-05,
415
+ "loss": 0.7278,
416
+ "mean_token_accuracy": 0.7782958063801806,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.3076923076923077,
421
+ "grad_norm": 0.3838835290476431,
422
+ "learning_rate": 1.7495640837411265e-05,
423
+ "loss": 0.7276,
424
+ "mean_token_accuracy": 0.778110788518626,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.3136094674556213,
429
+ "grad_norm": 0.39823260845501735,
430
+ "learning_rate": 1.735723910673132e-05,
431
+ "loss": 0.6969,
432
+ "mean_token_accuracy": 0.7861765198226371,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.31952662721893493,
437
+ "grad_norm": 0.3616285119296811,
438
+ "learning_rate": 1.7215694610530624e-05,
439
+ "loss": 0.7267,
440
+ "mean_token_accuracy": 0.7780276231344528,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.3254437869822485,
445
+ "grad_norm": 0.3564476104670264,
446
+ "learning_rate": 1.7071067811865477e-05,
447
+ "loss": 0.7084,
448
+ "mean_token_accuracy": 0.7837116023048635,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.33136094674556216,
453
+ "grad_norm": 0.44035089633256974,
454
+ "learning_rate": 1.6923420490448298e-05,
455
+ "loss": 0.7342,
456
+ "mean_token_accuracy": 0.776648161332027,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.33727810650887574,
461
+ "grad_norm": 0.39248432764207875,
462
+ "learning_rate": 1.6772815716257414e-05,
463
+ "loss": 0.725,
464
+ "mean_token_accuracy": 0.7786816515421023,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.3431952662721893,
469
+ "grad_norm": 0.36704706608942483,
470
+ "learning_rate": 1.6619317822595666e-05,
471
+ "loss": 0.7017,
472
+ "mean_token_accuracy": 0.7841417427362292,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.34911242603550297,
477
+ "grad_norm": 0.40512498191045965,
478
+ "learning_rate": 1.646299237860941e-05,
479
+ "loss": 0.75,
480
+ "mean_token_accuracy": 0.7708883209035493,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.35502958579881655,
485
+ "grad_norm": 0.39029160023670084,
486
+ "learning_rate": 1.6303906161279554e-05,
487
+ "loss": 0.7279,
488
+ "mean_token_accuracy": 0.7775349237600122,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.3609467455621302,
493
+ "grad_norm": 0.3953993708954393,
494
+ "learning_rate": 1.6142127126896682e-05,
495
+ "loss": 0.7356,
496
+ "mean_token_accuracy": 0.7745875530129677,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.3668639053254438,
501
+ "grad_norm": 0.36256710216714955,
502
+ "learning_rate": 1.597772438203241e-05,
503
+ "loss": 0.6997,
504
+ "mean_token_accuracy": 0.7848896531840401,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 0.3727810650887574,
509
+ "grad_norm": 0.40962620829800644,
510
+ "learning_rate": 1.5810768154019386e-05,
511
+ "loss": 0.7205,
512
+ "mean_token_accuracy": 0.7799613349100392,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 0.378698224852071,
517
+ "grad_norm": 0.3828488838066985,
518
+ "learning_rate": 1.5641329760952514e-05,
519
+ "loss": 0.708,
520
+ "mean_token_accuracy": 0.782232443701145,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.38461538461538464,
525
+ "grad_norm": 0.39122763310454406,
526
+ "learning_rate": 1.5469481581224274e-05,
527
+ "loss": 0.7074,
528
+ "mean_token_accuracy": 0.7819801124070774,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 0.3905325443786982,
533
+ "grad_norm": 0.3910386124912464,
534
+ "learning_rate": 1.529529702260709e-05,
535
+ "loss": 0.7318,
536
+ "mean_token_accuracy": 0.7753433511222331,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 0.39644970414201186,
541
+ "grad_norm": 0.3880043071649847,
542
+ "learning_rate": 1.5118850490896012e-05,
543
+ "loss": 0.7191,
544
+ "mean_token_accuracy": 0.7791978555083022,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 0.40236686390532544,
549
+ "grad_norm": 0.348781202358635,
550
+ "learning_rate": 1.4940217358125042e-05,
551
+ "loss": 0.6978,
552
+ "mean_token_accuracy": 0.785919046763025,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.40828402366863903,
557
+ "grad_norm": 0.34785888550803656,
558
+ "learning_rate": 1.4759473930370738e-05,
559
+ "loss": 0.6923,
560
+ "mean_token_accuracy": 0.787418621224268,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 0.41420118343195267,
565
+ "grad_norm": 0.3653232305381835,
566
+ "learning_rate": 1.4576697415156818e-05,
567
+ "loss": 0.6912,
568
+ "mean_token_accuracy": 0.7869110504306804,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 0.42011834319526625,
573
+ "grad_norm": 0.36764315457311614,
574
+ "learning_rate": 1.4391965888473705e-05,
575
+ "loss": 0.6991,
576
+ "mean_token_accuracy": 0.7839725057156516,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 0.4260355029585799,
581
+ "grad_norm": 0.3514136440565239,
582
+ "learning_rate": 1.4205358261427076e-05,
583
+ "loss": 0.7149,
584
+ "mean_token_accuracy": 0.7796496659579735,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 0.4319526627218935,
589
+ "grad_norm": 0.3686893566061322,
590
+ "learning_rate": 1.4016954246529697e-05,
591
+ "loss": 0.7197,
592
+ "mean_token_accuracy": 0.7794793514235452,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 0.4378698224852071,
597
+ "grad_norm": 0.34605681231940283,
598
+ "learning_rate": 1.3826834323650899e-05,
599
+ "loss": 0.687,
600
+ "mean_token_accuracy": 0.7897891867600086,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 0.4437869822485207,
605
+ "grad_norm": 0.369433655454952,
606
+ "learning_rate": 1.3635079705638298e-05,
607
+ "loss": 0.7018,
608
+ "mean_token_accuracy": 0.7843400450532293,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 0.44970414201183434,
613
+ "grad_norm": 0.3637775910740719,
614
+ "learning_rate": 1.3441772303626387e-05,
615
+ "loss": 0.6811,
616
+ "mean_token_accuracy": 0.7883583477300129,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 0.4556213017751479,
621
+ "grad_norm": 0.3552805600165443,
622
+ "learning_rate": 1.3246994692046837e-05,
623
+ "loss": 0.6877,
624
+ "mean_token_accuracy": 0.7883414815445715,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 0.46153846153846156,
629
+ "grad_norm": 0.42418323654238854,
630
+ "learning_rate": 1.305083007335549e-05,
631
+ "loss": 0.7307,
632
+ "mean_token_accuracy": 0.7747076789831797,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 0.46745562130177515,
637
+ "grad_norm": 0.35584440430369396,
638
+ "learning_rate": 1.2853362242491054e-05,
639
+ "loss": 0.7317,
640
+ "mean_token_accuracy": 0.7756405018053134,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 0.47337278106508873,
645
+ "grad_norm": 0.3233937276689462,
646
+ "learning_rate": 1.2654675551080724e-05,
647
+ "loss": 0.6992,
648
+ "mean_token_accuracy": 0.7849270935923538,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 0.47928994082840237,
653
+ "grad_norm": 0.350970039014215,
654
+ "learning_rate": 1.2454854871407993e-05,
655
+ "loss": 0.7107,
656
+ "mean_token_accuracy": 0.781704652022156,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 0.48520710059171596,
661
+ "grad_norm": 0.35166716550940014,
662
+ "learning_rate": 1.2253985560158064e-05,
663
+ "loss": 0.694,
664
+ "mean_token_accuracy": 0.7867224592606594,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 0.4911242603550296,
669
+ "grad_norm": 0.3655542868183894,
670
+ "learning_rate": 1.2052153421956343e-05,
671
+ "loss": 0.6913,
672
+ "mean_token_accuracy": 0.7868167246531167,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 0.4970414201183432,
677
+ "grad_norm": 0.37786152221461855,
678
+ "learning_rate": 1.1849444672715587e-05,
679
+ "loss": 0.7265,
680
+ "mean_token_accuracy": 0.776165643284536,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 0.5029585798816568,
685
+ "grad_norm": 0.34932873765751665,
686
+ "learning_rate": 1.164594590280734e-05,
687
+ "loss": 0.711,
688
+ "mean_token_accuracy": 0.7806680330763345,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 0.5088757396449705,
693
+ "grad_norm": 0.3539261852137339,
694
+ "learning_rate": 1.1441744040073469e-05,
695
+ "loss": 0.7165,
696
+ "mean_token_accuracy": 0.7788759918792447,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 0.514792899408284,
701
+ "grad_norm": 0.3395798470618678,
702
+ "learning_rate": 1.123692631269348e-05,
703
+ "loss": 0.6997,
704
+ "mean_token_accuracy": 0.7835249742198639,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 0.5207100591715976,
709
+ "grad_norm": 0.3411316208847806,
710
+ "learning_rate": 1.103158021192357e-05,
711
+ "loss": 0.6958,
712
+ "mean_token_accuracy": 0.7860397200235923,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 0.5266272189349113,
717
+ "grad_norm": 0.3619282034457249,
718
+ "learning_rate": 1.0825793454723325e-05,
719
+ "loss": 0.7052,
720
+ "mean_token_accuracy": 0.7834187886797611,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 0.5325443786982249,
725
+ "grad_norm": 0.34273872199347044,
726
+ "learning_rate": 1.0619653946285948e-05,
727
+ "loss": 0.685,
728
+ "mean_token_accuracy": 0.7897067821918299,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 0.5384615384615384,
733
+ "grad_norm": 0.33199715753976633,
734
+ "learning_rate": 1.0413249742488132e-05,
735
+ "loss": 0.6917,
736
+ "mean_token_accuracy": 0.7872031382647131,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 0.5443786982248521,
741
+ "grad_norm": 0.3342393332811213,
742
+ "learning_rate": 1.0206669012275546e-05,
743
+ "loss": 0.7011,
744
+ "mean_token_accuracy": 0.784091056433467,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 0.5502958579881657,
749
+ "grad_norm": 0.33611685834665483,
750
+ "learning_rate": 1e-05,
751
+ "loss": 0.7156,
752
+ "mean_token_accuracy": 0.7788634871573115,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 0.5562130177514792,
757
+ "grad_norm": 0.33795640856270726,
758
+ "learning_rate": 9.79333098772446e-06,
759
+ "loss": 0.6843,
760
+ "mean_token_accuracy": 0.7874877928517997,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 0.5621301775147929,
765
+ "grad_norm": 0.3553103385556057,
766
+ "learning_rate": 9.586750257511868e-06,
767
+ "loss": 0.684,
768
+ "mean_token_accuracy": 0.7891702815425776,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 0.5680473372781065,
773
+ "grad_norm": 0.3599899819769442,
774
+ "learning_rate": 9.380346053714055e-06,
775
+ "loss": 0.6809,
776
+ "mean_token_accuracy": 0.7879558819894679,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 0.5739644970414202,
781
+ "grad_norm": 0.33562142706566866,
782
+ "learning_rate": 9.174206545276678e-06,
783
+ "loss": 0.6732,
784
+ "mean_token_accuracy": 0.7917185320065199,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 0.5798816568047337,
789
+ "grad_norm": 0.33455633173601695,
790
+ "learning_rate": 8.968419788076431e-06,
791
+ "loss": 0.6957,
792
+ "mean_token_accuracy": 0.7847382398115799,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 0.5857988165680473,
797
+ "grad_norm": 0.3490744063204216,
798
+ "learning_rate": 8.763073687306523e-06,
799
+ "loss": 0.6924,
800
+ "mean_token_accuracy": 0.7862588216550412,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 0.591715976331361,
805
+ "grad_norm": 0.33348768096991704,
806
+ "learning_rate": 8.558255959926533e-06,
807
+ "loss": 0.6992,
808
+ "mean_token_accuracy": 0.7847955930336572,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 0.591715976331361,
813
+ "eval_loss": 0.7157539129257202,
814
+ "eval_mean_token_accuracy": 0.7586642623023677,
815
+ "eval_runtime": 4.8665,
816
+ "eval_samples_per_second": 26.508,
817
+ "eval_steps_per_second": 1.027,
818
+ "step": 100
819
+ },
820
+ {
821
+ "epoch": 0.5976331360946746,
822
+ "grad_norm": 0.33075937472785844,
823
+ "learning_rate": 8.35405409719266e-06,
824
+ "loss": 0.6872,
825
+ "mean_token_accuracy": 0.787283402091289,
826
+ "step": 101
827
+ },
828
+ {
829
+ "epoch": 0.6035502958579881,
830
+ "grad_norm": 0.3590337795434198,
831
+ "learning_rate": 8.150555327284417e-06,
832
+ "loss": 0.6861,
833
+ "mean_token_accuracy": 0.7881656395518974,
834
+ "step": 102
835
+ },
836
+ {
837
+ "epoch": 0.6094674556213018,
838
+ "grad_norm": 0.3243096344713308,
839
+ "learning_rate": 7.947846578043658e-06,
840
+ "loss": 0.687,
841
+ "mean_token_accuracy": 0.7868769866991424,
842
+ "step": 103
843
+ },
844
+ {
845
+ "epoch": 0.6153846153846154,
846
+ "grad_norm": 0.31809647789793993,
847
+ "learning_rate": 7.746014439841941e-06,
848
+ "loss": 0.7024,
849
+ "mean_token_accuracy": 0.7840864820127753,
850
+ "step": 104
851
+ },
852
+ {
853
+ "epoch": 0.621301775147929,
854
+ "grad_norm": 0.3237845217614286,
855
+ "learning_rate": 7.545145128592009e-06,
856
+ "loss": 0.674,
857
+ "mean_token_accuracy": 0.7901693771106895,
858
+ "step": 105
859
+ },
860
+ {
861
+ "epoch": 0.6272189349112426,
862
+ "grad_norm": 0.31884492713723883,
863
+ "learning_rate": 7.34532444891928e-06,
864
+ "loss": 0.6972,
865
+ "mean_token_accuracy": 0.7838730344185979,
866
+ "step": 106
867
+ },
868
+ {
869
+ "epoch": 0.6331360946745562,
870
+ "grad_norm": 0.3250725158937223,
871
+ "learning_rate": 7.14663775750895e-06,
872
+ "loss": 0.7351,
873
+ "mean_token_accuracy": 0.7743010028506793,
874
+ "step": 107
875
+ },
876
+ {
877
+ "epoch": 0.6390532544378699,
878
+ "grad_norm": 0.34110974065150124,
879
+ "learning_rate": 6.949169926644513e-06,
880
+ "loss": 0.7011,
881
+ "mean_token_accuracy": 0.783713761454518,
882
+ "step": 108
883
+ },
884
+ {
885
+ "epoch": 0.6449704142011834,
886
+ "grad_norm": 0.31095600200622964,
887
+ "learning_rate": 6.7530053079531664e-06,
888
+ "loss": 0.7021,
889
+ "mean_token_accuracy": 0.7831529561955156,
890
+ "step": 109
891
+ },
892
+ {
893
+ "epoch": 0.650887573964497,
894
+ "grad_norm": 0.31355515565609077,
895
+ "learning_rate": 6.558227696373617e-06,
896
+ "loss": 0.6887,
897
+ "mean_token_accuracy": 0.7874667036092751,
898
+ "step": 110
899
+ },
900
+ {
901
+ "epoch": 0.6568047337278107,
902
+ "grad_norm": 0.329751885795174,
903
+ "learning_rate": 6.364920294361701e-06,
904
+ "loss": 0.709,
905
+ "mean_token_accuracy": 0.7815413361996215,
906
+ "step": 111
907
+ },
908
+ {
909
+ "epoch": 0.6627218934911243,
910
+ "grad_norm": 0.30882694735110866,
911
+ "learning_rate": 6.173165676349103e-06,
912
+ "loss": 0.7062,
913
+ "mean_token_accuracy": 0.7818792436067044,
914
+ "step": 112
915
+ },
916
+ {
917
+ "epoch": 0.6686390532544378,
918
+ "grad_norm": 0.3191082129763723,
919
+ "learning_rate": 5.983045753470308e-06,
920
+ "loss": 0.6882,
921
+ "mean_token_accuracy": 0.7865235373585306,
922
+ "step": 113
923
+ },
924
+ {
925
+ "epoch": 0.6745562130177515,
926
+ "grad_norm": 0.32856595537873384,
927
+ "learning_rate": 5.794641738572925e-06,
928
+ "loss": 0.6838,
929
+ "mean_token_accuracy": 0.7889740840283941,
930
+ "step": 114
931
+ },
932
+ {
933
+ "epoch": 0.6804733727810651,
934
+ "grad_norm": 0.3147396913003447,
935
+ "learning_rate": 5.608034111526298e-06,
936
+ "loss": 0.6694,
937
+ "mean_token_accuracy": 0.7932459708127269,
938
+ "step": 115
939
+ },
940
+ {
941
+ "epoch": 0.6863905325443787,
942
+ "grad_norm": 0.3428397687955701,
943
+ "learning_rate": 5.423302584843186e-06,
944
+ "loss": 0.7074,
945
+ "mean_token_accuracy": 0.7825890227644128,
946
+ "step": 116
947
+ },
948
+ {
949
+ "epoch": 0.6923076923076923,
950
+ "grad_norm": 0.30279217397028946,
951
+ "learning_rate": 5.240526069629265e-06,
952
+ "loss": 0.6784,
953
+ "mean_token_accuracy": 0.7906955891603145,
954
+ "step": 117
955
+ },
956
+ {
957
+ "epoch": 0.6982248520710059,
958
+ "grad_norm": 0.3003758212327991,
959
+ "learning_rate": 5.059782641874962e-06,
960
+ "loss": 0.6819,
961
+ "mean_token_accuracy": 0.7889431193959375,
962
+ "step": 118
963
+ },
964
+ {
965
+ "epoch": 0.7041420118343196,
966
+ "grad_norm": 0.31649740332350773,
967
+ "learning_rate": 4.881149509103993e-06,
968
+ "loss": 0.6816,
969
+ "mean_token_accuracy": 0.7894825257236546,
970
+ "step": 119
971
+ },
972
+ {
973
+ "epoch": 0.7100591715976331,
974
+ "grad_norm": 0.3141834954228162,
975
+ "learning_rate": 4.704702977392914e-06,
976
+ "loss": 0.6549,
977
+ "mean_token_accuracy": 0.7973338512758128,
978
+ "step": 120
979
+ },
980
+ {
981
+ "epoch": 0.7159763313609467,
982
+ "grad_norm": 0.3146743815009587,
983
+ "learning_rate": 4.530518418775734e-06,
984
+ "loss": 0.6995,
985
+ "mean_token_accuracy": 0.7840122749260579,
986
+ "step": 121
987
+ },
988
+ {
989
+ "epoch": 0.7218934911242604,
990
+ "grad_norm": 0.31485965487518236,
991
+ "learning_rate": 4.35867023904749e-06,
992
+ "loss": 0.683,
993
+ "mean_token_accuracy": 0.7888863658938954,
994
+ "step": 122
995
+ },
996
+ {
997
+ "epoch": 0.727810650887574,
998
+ "grad_norm": 0.31400988808245894,
999
+ "learning_rate": 4.189231845980618e-06,
1000
+ "loss": 0.675,
1001
+ "mean_token_accuracy": 0.7907750008695696,
1002
+ "step": 123
1003
+ },
1004
+ {
1005
+ "epoch": 0.7337278106508875,
1006
+ "grad_norm": 0.31249917487430845,
1007
+ "learning_rate": 4.0222756179675915e-06,
1008
+ "loss": 0.6814,
1009
+ "mean_token_accuracy": 0.7889693618490632,
1010
+ "step": 124
1011
+ },
1012
+ {
1013
+ "epoch": 0.7396449704142012,
1014
+ "grad_norm": 0.3200490939966776,
1015
+ "learning_rate": 3.857872873103322e-06,
1016
+ "loss": 0.7015,
1017
+ "mean_token_accuracy": 0.7827075366904457,
1018
+ "step": 125
1019
+ },
1020
+ {
1021
+ "epoch": 0.7455621301775148,
1022
+ "grad_norm": 0.3355400247789273,
1023
+ "learning_rate": 3.69609383872045e-06,
1024
+ "loss": 0.7009,
1025
+ "mean_token_accuracy": 0.7832582153821204,
1026
+ "step": 126
1027
+ },
1028
+ {
1029
+ "epoch": 0.7514792899408284,
1030
+ "grad_norm": 0.305679884120639,
1031
+ "learning_rate": 3.5370076213905904e-06,
1032
+ "loss": 0.6787,
1033
+ "mean_token_accuracy": 0.790282171142539,
1034
+ "step": 127
1035
+ },
1036
+ {
1037
+ "epoch": 0.757396449704142,
1038
+ "grad_norm": 0.30051476204613337,
1039
+ "learning_rate": 3.380682177404335e-06,
1040
+ "loss": 0.6965,
1041
+ "mean_token_accuracy": 0.7849160254658745,
1042
+ "step": 128
1043
+ },
1044
+ {
1045
+ "epoch": 0.7633136094674556,
1046
+ "grad_norm": 0.31059288083076164,
1047
+ "learning_rate": 3.2271842837425917e-06,
1048
+ "loss": 0.7068,
1049
+ "mean_token_accuracy": 0.7814057339178149,
1050
+ "step": 129
1051
+ },
1052
+ {
1053
+ "epoch": 0.7692307692307693,
1054
+ "grad_norm": 0.30761030210291535,
1055
+ "learning_rate": 3.0765795095517026e-06,
1056
+ "loss": 0.671,
1057
+ "mean_token_accuracy": 0.7930299117720654,
1058
+ "step": 130
1059
+ },
1060
+ {
1061
+ "epoch": 0.7751479289940828,
1062
+ "grad_norm": 0.31294726987243277,
1063
+ "learning_rate": 2.9289321881345257e-06,
1064
+ "loss": 0.7006,
1065
+ "mean_token_accuracy": 0.7824703704600162,
1066
+ "step": 131
1067
+ },
1068
+ {
1069
+ "epoch": 0.7810650887573964,
1070
+ "grad_norm": 0.32317729195664163,
1071
+ "learning_rate": 2.7843053894693805e-06,
1072
+ "loss": 0.7152,
1073
+ "mean_token_accuracy": 0.7791240758955355,
1074
+ "step": 132
1075
+ },
1076
+ {
1077
+ "epoch": 0.7869822485207101,
1078
+ "grad_norm": 0.2961077123206801,
1079
+ "learning_rate": 2.642760893268684e-06,
1080
+ "loss": 0.6914,
1081
+ "mean_token_accuracy": 0.7868451333562997,
1082
+ "step": 133
1083
+ },
1084
+ {
1085
+ "epoch": 0.7928994082840237,
1086
+ "grad_norm": 0.3079418866041373,
1087
+ "learning_rate": 2.504359162588741e-06,
1088
+ "loss": 0.6841,
1089
+ "mean_token_accuracy": 0.7884792735031155,
1090
+ "step": 134
1091
+ },
1092
+ {
1093
+ "epoch": 0.7988165680473372,
1094
+ "grad_norm": 0.3037332779693865,
1095
+ "learning_rate": 2.369159318001937e-06,
1096
+ "loss": 0.6988,
1097
+ "mean_token_accuracy": 0.7842482711786377,
1098
+ "step": 135
1099
+ },
1100
+ {
1101
+ "epoch": 0.8047337278106509,
1102
+ "grad_norm": 0.3009627129738944,
1103
+ "learning_rate": 2.237219112342426e-06,
1104
+ "loss": 0.6717,
1105
+ "mean_token_accuracy": 0.7914490102362668,
1106
+ "step": 136
1107
+ },
1108
+ {
1109
+ "epoch": 0.8106508875739645,
1110
+ "grad_norm": 0.29623020549336865,
1111
+ "learning_rate": 2.1085949060360654e-06,
1112
+ "loss": 0.6955,
1113
+ "mean_token_accuracy": 0.7852500014511501,
1114
+ "step": 137
1115
+ },
1116
+ {
1117
+ "epoch": 0.8165680473372781,
1118
+ "grad_norm": 0.31868412326360324,
1119
+ "learning_rate": 1.983341643025117e-06,
1120
+ "loss": 0.7077,
1121
+ "mean_token_accuracy": 0.7818251421138749,
1122
+ "step": 138
1123
+ },
1124
+ {
1125
+ "epoch": 0.8224852071005917,
1126
+ "grad_norm": 0.28770049101277134,
1127
+ "learning_rate": 1.861512827298051e-06,
1128
+ "loss": 0.6702,
1129
+ "mean_token_accuracy": 0.7927647650840932,
1130
+ "step": 139
1131
+ },
1132
+ {
1133
+ "epoch": 0.8284023668639053,
1134
+ "grad_norm": 0.2990059242232171,
1135
+ "learning_rate": 1.743160500034443e-06,
1136
+ "loss": 0.698,
1137
+ "mean_token_accuracy": 0.7854336655349383,
1138
+ "step": 140
1139
+ },
1140
+ {
1141
+ "epoch": 0.834319526627219,
1142
+ "grad_norm": 0.31036052278345283,
1143
+ "learning_rate": 1.6283352173747148e-06,
1144
+ "loss": 0.6944,
1145
+ "mean_token_accuracy": 0.7851812952221086,
1146
+ "step": 141
1147
+ },
1148
+ {
1149
+ "epoch": 0.8402366863905325,
1150
+ "grad_norm": 0.31687773547502635,
1151
+ "learning_rate": 1.5170860288242638e-06,
1152
+ "loss": 0.6934,
1153
+ "mean_token_accuracy": 0.7867884869373907,
1154
+ "step": 142
1155
+ },
1156
+ {
1157
+ "epoch": 0.8461538461538461,
1158
+ "grad_norm": 0.30938603900072376,
1159
+ "learning_rate": 1.409460456301147e-06,
1160
+ "loss": 0.6795,
1161
+ "mean_token_accuracy": 0.7895160039493238,
1162
+ "step": 143
1163
+ },
1164
+ {
1165
+ "epoch": 0.8520710059171598,
1166
+ "grad_norm": 0.2952536141242446,
1167
+ "learning_rate": 1.305504473836331e-06,
1168
+ "loss": 0.6984,
1169
+ "mean_token_accuracy": 0.7844431538363902,
1170
+ "step": 144
1171
+ },
1172
+ {
1173
+ "epoch": 0.8579881656804734,
1174
+ "grad_norm": 0.3057613487662314,
1175
+ "learning_rate": 1.2052624879351105e-06,
1176
+ "loss": 0.6808,
1177
+ "mean_token_accuracy": 0.7889678951582548,
1178
+ "step": 145
1179
+ },
1180
+ {
1181
+ "epoch": 0.863905325443787,
1182
+ "grad_norm": 0.29097999865599966,
1183
+ "learning_rate": 1.1087773186081474e-06,
1184
+ "loss": 0.6841,
1185
+ "mean_token_accuracy": 0.7886474079309541,
1186
+ "step": 146
1187
+ },
1188
+ {
1189
+ "epoch": 0.8698224852071006,
1190
+ "grad_norm": 0.3142274595418203,
1191
+ "learning_rate": 1.0160901810802114e-06,
1192
+ "loss": 0.6738,
1193
+ "mean_token_accuracy": 0.7907368421042241,
1194
+ "step": 147
1195
+ },
1196
+ {
1197
+ "epoch": 0.8757396449704142,
1198
+ "grad_norm": 0.2925617205492779,
1199
+ "learning_rate": 9.272406681844015e-07,
1200
+ "loss": 0.6709,
1201
+ "mean_token_accuracy": 0.7922187969571426,
1202
+ "step": 148
1203
+ },
1204
+ {
1205
+ "epoch": 0.8816568047337278,
1206
+ "grad_norm": 0.27724813470631104,
1207
+ "learning_rate": 8.42266733449425e-07,
1208
+ "loss": 0.6858,
1209
+ "mean_token_accuracy": 0.7878970031830121,
1210
+ "step": 149
1211
+ },
1212
+ {
1213
+ "epoch": 0.8875739644970414,
1214
+ "grad_norm": 0.2969141966080097,
1215
+ "learning_rate": 7.612046748871327e-07,
1216
+ "loss": 0.6835,
1217
+ "mean_token_accuracy": 0.7885832175544185,
1218
+ "step": 150
1219
+ },
1220
+ {
1221
+ "epoch": 0.893491124260355,
1222
+ "grad_norm": 0.30371772219322385,
1223
+ "learning_rate": 6.840891194872112e-07,
1224
+ "loss": 0.6919,
1225
+ "mean_token_accuracy": 0.7857929535715237,
1226
+ "step": 151
1227
+ },
1228
+ {
1229
+ "epoch": 0.8994082840236687,
1230
+ "grad_norm": 0.291180674993794,
1231
+ "learning_rate": 6.109530084257043e-07,
1232
+ "loss": 0.6767,
1233
+ "mean_token_accuracy": 0.7914383926503787,
1234
+ "step": 152
1235
+ },
1236
+ {
1237
+ "epoch": 0.9053254437869822,
1238
+ "grad_norm": 0.29261209458574694,
1239
+ "learning_rate": 5.418275829936537e-07,
1240
+ "loss": 0.6726,
1241
+ "mean_token_accuracy": 0.7907148025796484,
1242
+ "step": 153
1243
+ },
1244
+ {
1245
+ "epoch": 0.9112426035502958,
1246
+ "grad_norm": 0.2776593810597509,
1247
+ "learning_rate": 4.7674237125185597e-07,
1248
+ "loss": 0.674,
1249
+ "mean_token_accuracy": 0.7914961569221735,
1250
+ "step": 154
1251
+ },
1252
+ {
1253
+ "epoch": 0.9171597633136095,
1254
+ "grad_norm": 0.28387582813592127,
1255
+ "learning_rate": 4.1572517541747294e-07,
1256
+ "loss": 0.6422,
1257
+ "mean_token_accuracy": 0.8009981820698834,
1258
+ "step": 155
1259
+ },
1260
+ {
1261
+ "epoch": 0.9230769230769231,
1262
+ "grad_norm": 0.2938250907370977,
1263
+ "learning_rate": 3.588020599878639e-07,
1264
+ "loss": 0.6962,
1265
+ "mean_token_accuracy": 0.7844788274775369,
1266
+ "step": 156
1267
+ },
1268
+ {
1269
+ "epoch": 0.9289940828402367,
1270
+ "grad_norm": 0.2804499286030571,
1271
+ "learning_rate": 3.059973406066963e-07,
1272
+ "loss": 0.6714,
1273
+ "mean_token_accuracy": 0.7933834235664327,
1274
+ "step": 157
1275
+ },
1276
+ {
1277
+ "epoch": 0.9349112426035503,
1278
+ "grad_norm": 0.29640364523794643,
1279
+ "learning_rate": 2.573335736771254e-07,
1280
+ "loss": 0.6786,
1281
+ "mean_token_accuracy": 0.7897013469630543,
1282
+ "step": 158
1283
+ },
1284
+ {
1285
+ "epoch": 0.9408284023668639,
1286
+ "grad_norm": 0.2783198872073197,
1287
+ "learning_rate": 2.1283154672645522e-07,
1288
+ "loss": 0.6731,
1289
+ "mean_token_accuracy": 0.7911190417303665,
1290
+ "step": 159
1291
+ },
1292
+ {
1293
+ "epoch": 0.9467455621301775,
1294
+ "grad_norm": 0.2839659205849638,
1295
+ "learning_rate": 1.7251026952640583e-07,
1296
+ "loss": 0.6969,
1297
+ "mean_token_accuracy": 0.7854169932946689,
1298
+ "step": 160
1299
+ },
1300
+ {
1301
+ "epoch": 0.9526627218934911,
1302
+ "grad_norm": 0.29734374928559365,
1303
+ "learning_rate": 1.3638696597277678e-07,
1304
+ "loss": 0.6764,
1305
+ "mean_token_accuracy": 0.790571362847956,
1306
+ "step": 161
1307
+ },
1308
+ {
1309
+ "epoch": 0.9585798816568047,
1310
+ "grad_norm": 0.30464858616674234,
1311
+ "learning_rate": 1.0447706672797264e-07,
1312
+ "loss": 0.6735,
1313
+ "mean_token_accuracy": 0.7917316028516589,
1314
+ "step": 162
1315
+ },
1316
+ {
1317
+ "epoch": 0.9644970414201184,
1318
+ "grad_norm": 0.29012852499944247,
1319
+ "learning_rate": 7.679420262954984e-08,
1320
+ "loss": 0.6699,
1321
+ "mean_token_accuracy": 0.7924379369006603,
1322
+ "step": 163
1323
+ },
1324
+ {
1325
+ "epoch": 0.9704142011834319,
1326
+ "grad_norm": 0.2781835486284672,
1327
+ "learning_rate": 5.3350198867574424e-08,
1328
+ "loss": 0.7051,
1329
+ "mean_token_accuracy": 0.7818380497316074,
1330
+ "step": 164
1331
+ },
1332
+ {
1333
+ "epoch": 0.9763313609467456,
1334
+ "grad_norm": 0.2722470698221784,
1335
+ "learning_rate": 3.4155069933301535e-08,
1336
+ "loss": 0.6566,
1337
+ "mean_token_accuracy": 0.7958629252087849,
1338
+ "step": 165
1339
+ },
1340
+ {
1341
+ "epoch": 0.9822485207100592,
1342
+ "grad_norm": 0.2853070020591702,
1343
+ "learning_rate": 1.9217015341318478e-08,
1344
+ "loss": 0.6902,
1345
+ "mean_token_accuracy": 0.7868536587227888,
1346
+ "step": 166
1347
+ },
1348
+ {
1349
+ "epoch": 0.9881656804733728,
1350
+ "grad_norm": 0.28783554756968166,
1351
+ "learning_rate": 8.542416126989805e-09,
1352
+ "loss": 0.6799,
1353
+ "mean_token_accuracy": 0.7887756232646665,
1354
+ "step": 167
1355
+ },
1356
+ {
1357
+ "epoch": 0.9940828402366864,
1358
+ "grad_norm": 0.2874058567649186,
1359
+ "learning_rate": 2.1358321206899067e-09,
1360
+ "loss": 0.703,
1361
+ "mean_token_accuracy": 0.7823018287164306,
1362
+ "step": 168
1363
+ },
1364
+ {
1365
+ "epoch": 1.0,
1366
+ "grad_norm": 0.2792632140682557,
1367
+ "learning_rate": 0.0,
1368
+ "loss": 0.6884,
1369
+ "mean_token_accuracy": 0.7866684149311904,
1370
+ "step": 169
1371
+ },
1372
+ {
1373
+ "epoch": 1.0,
1374
+ "step": 169,
1375
+ "total_flos": 128380330573824.0,
1376
+ "train_loss": 0.7332075143001489,
1377
+ "train_runtime": 1234.0886,
1378
+ "train_samples_per_second": 17.521,
1379
+ "train_steps_per_second": 0.137
1380
+ }
1381
+ ],
1382
+ "logging_steps": 1,
1383
+ "max_steps": 169,
1384
+ "num_input_tokens_seen": 0,
1385
+ "num_train_epochs": 1,
1386
+ "save_steps": 500,
1387
+ "stateful_callbacks": {
1388
+ "TrainerControl": {
1389
+ "args": {
1390
+ "should_epoch_stop": false,
1391
+ "should_evaluate": false,
1392
+ "should_log": false,
1393
+ "should_save": false,
1394
+ "should_training_stop": false
1395
+ },
1396
+ "attributes": {}
1397
+ }
1398
+ },
1399
+ "total_flos": 128380330573824.0,
1400
+ "train_batch_size": 2,
1401
+ "trial_name": null,
1402
+ "trial_params": null
1403
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:869dc7548deeed4f628c3d62752333599c26507cbb30cb5c6d9f39df68ffcadf
3
+ size 7352
vocab.json ADDED
The diff for this file is too large to render. See raw diff