Model save
Browse files- .gitattributes +1 -0
- README.md +57 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- config.json +29 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +441 -0
- special_tokens_map.json +25 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- train_results.json +8 -0
- trainer_state.json +1403 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
model_name: Qwen2.5-3B-Open-R1-Distill
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
- trl
|
7 |
+
- sft
|
8 |
+
licence: license
|
9 |
+
---
|
10 |
+
|
11 |
+
# Model Card for Qwen2.5-3B-Open-R1-Distill
|
12 |
+
|
13 |
+
This model is a fine-tuned version of [None](https://huggingface.co/None).
|
14 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
15 |
+
|
16 |
+
## Quick start
|
17 |
+
|
18 |
+
```python
|
19 |
+
from transformers import pipeline
|
20 |
+
|
21 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
22 |
+
generator = pipeline("text-generation", model="tenacioustommy/Qwen2.5-3B-Open-R1-Distill", device="cuda")
|
23 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
24 |
+
print(output["generated_text"])
|
25 |
+
```
|
26 |
+
|
27 |
+
## Training procedure
|
28 |
+
|
29 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tenacioustommy6/huggingface/runs/vjgnbopg)
|
30 |
+
|
31 |
+
|
32 |
+
This model was trained with SFT.
|
33 |
+
|
34 |
+
### Framework versions
|
35 |
+
|
36 |
+
- TRL: 0.15.0.dev0
|
37 |
+
- Transformers: 4.49.0.dev0
|
38 |
+
- Pytorch: 2.5.1
|
39 |
+
- Datasets: 3.2.0
|
40 |
+
- Tokenizers: 0.21.0
|
41 |
+
|
42 |
+
## Citations
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
Cite TRL as:
|
47 |
+
|
48 |
+
```bibtex
|
49 |
+
@misc{vonwerra2022trl,
|
50 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
51 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
52 |
+
year = 2020,
|
53 |
+
journal = {GitHub repository},
|
54 |
+
publisher = {GitHub},
|
55 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
56 |
+
}
|
57 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 128380330573824.0,
|
3 |
+
"train_loss": 0.7332075143001489,
|
4 |
+
"train_runtime": 1234.0886,
|
5 |
+
"train_samples": 16610,
|
6 |
+
"train_samples_per_second": 17.521,
|
7 |
+
"train_steps_per_second": 0.137
|
8 |
+
}
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/cpfs01/user/huangzihan/models/Qwen2.5-3B-Instruct/snapshots/aa8e72537993ba99e69dfaafa59ed015b17504d1",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 2048,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 70,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 36,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.49.0.dev0",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 151936
|
29 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.49.0.dev0"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:045637881e44c7a1ef11dbf43bf3ce8d65147e757b6774caa1ca2c017a979a1e
|
3 |
+
size 4957560304
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:159eb5ee2c98e1ed39f12b637fb035ed502f69f9a98a63d262fa0e7e8521fe0d
|
3 |
+
size 1214366696
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6171877376
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
368 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
440 |
+
}
|
441 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": "<|im_end|>"
|
25 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|im_end|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 128380330573824.0,
|
3 |
+
"train_loss": 0.7332075143001489,
|
4 |
+
"train_runtime": 1234.0886,
|
5 |
+
"train_samples": 16610,
|
6 |
+
"train_samples_per_second": 17.521,
|
7 |
+
"train_steps_per_second": 0.137
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 169,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.005917159763313609,
|
13 |
+
"grad_norm": 5.048887351152406,
|
14 |
+
"learning_rate": 1.1764705882352942e-06,
|
15 |
+
"loss": 1.0795,
|
16 |
+
"mean_token_accuracy": 0.7206979429209666,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.011834319526627219,
|
21 |
+
"grad_norm": 4.879597464054353,
|
22 |
+
"learning_rate": 2.3529411764705885e-06,
|
23 |
+
"loss": 1.1029,
|
24 |
+
"mean_token_accuracy": 0.7117051311557141,
|
25 |
+
"step": 2
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 0.01775147928994083,
|
29 |
+
"grad_norm": 4.657432447307512,
|
30 |
+
"learning_rate": 3.529411764705883e-06,
|
31 |
+
"loss": 1.0906,
|
32 |
+
"mean_token_accuracy": 0.7171718488582962,
|
33 |
+
"step": 3
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.023668639053254437,
|
37 |
+
"grad_norm": 4.467351868935966,
|
38 |
+
"learning_rate": 4.705882352941177e-06,
|
39 |
+
"loss": 1.0718,
|
40 |
+
"mean_token_accuracy": 0.7218519479951946,
|
41 |
+
"step": 4
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.029585798816568046,
|
45 |
+
"grad_norm": 3.7064015727740425,
|
46 |
+
"learning_rate": 5.882352941176471e-06,
|
47 |
+
"loss": 1.0701,
|
48 |
+
"mean_token_accuracy": 0.7191323254401871,
|
49 |
+
"step": 5
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.03550295857988166,
|
53 |
+
"grad_norm": 2.382423991923031,
|
54 |
+
"learning_rate": 7.058823529411766e-06,
|
55 |
+
"loss": 1.0118,
|
56 |
+
"mean_token_accuracy": 0.7285496854387108,
|
57 |
+
"step": 6
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.04142011834319527,
|
61 |
+
"grad_norm": 2.101237602674026,
|
62 |
+
"learning_rate": 8.23529411764706e-06,
|
63 |
+
"loss": 0.9682,
|
64 |
+
"mean_token_accuracy": 0.7363681597344438,
|
65 |
+
"step": 7
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.047337278106508875,
|
69 |
+
"grad_norm": 2.015056074152268,
|
70 |
+
"learning_rate": 9.411764705882354e-06,
|
71 |
+
"loss": 1.0044,
|
72 |
+
"mean_token_accuracy": 0.7251941996166579,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.05325443786982249,
|
77 |
+
"grad_norm": 1.6355380376413269,
|
78 |
+
"learning_rate": 1.0588235294117648e-05,
|
79 |
+
"loss": 0.9629,
|
80 |
+
"mean_token_accuracy": 0.7324857047569558,
|
81 |
+
"step": 9
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.05917159763313609,
|
85 |
+
"grad_norm": 1.7763113613059038,
|
86 |
+
"learning_rate": 1.1764705882352942e-05,
|
87 |
+
"loss": 0.9515,
|
88 |
+
"mean_token_accuracy": 0.7337997991969313,
|
89 |
+
"step": 10
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.0650887573964497,
|
93 |
+
"grad_norm": 1.3969034500597064,
|
94 |
+
"learning_rate": 1.2941176470588238e-05,
|
95 |
+
"loss": 0.9259,
|
96 |
+
"mean_token_accuracy": 0.7387967799773972,
|
97 |
+
"step": 11
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 0.07100591715976332,
|
101 |
+
"grad_norm": 0.953979333766809,
|
102 |
+
"learning_rate": 1.4117647058823532e-05,
|
103 |
+
"loss": 0.873,
|
104 |
+
"mean_token_accuracy": 0.7510249436735839,
|
105 |
+
"step": 12
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.07692307692307693,
|
109 |
+
"grad_norm": 1.127863397786703,
|
110 |
+
"learning_rate": 1.5294117647058822e-05,
|
111 |
+
"loss": 0.8988,
|
112 |
+
"mean_token_accuracy": 0.7415024955395976,
|
113 |
+
"step": 13
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.08284023668639054,
|
117 |
+
"grad_norm": 0.9273891062266637,
|
118 |
+
"learning_rate": 1.647058823529412e-05,
|
119 |
+
"loss": 0.8642,
|
120 |
+
"mean_token_accuracy": 0.750242238655049,
|
121 |
+
"step": 14
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.08875739644970414,
|
125 |
+
"grad_norm": 0.8053975766192991,
|
126 |
+
"learning_rate": 1.7647058823529414e-05,
|
127 |
+
"loss": 0.8616,
|
128 |
+
"mean_token_accuracy": 0.7512058479268567,
|
129 |
+
"step": 15
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.09467455621301775,
|
133 |
+
"grad_norm": 0.7333036953961584,
|
134 |
+
"learning_rate": 1.8823529411764708e-05,
|
135 |
+
"loss": 0.8414,
|
136 |
+
"mean_token_accuracy": 0.7541005429250093,
|
137 |
+
"step": 16
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.10059171597633136,
|
141 |
+
"grad_norm": 0.6867367211047125,
|
142 |
+
"learning_rate": 2e-05,
|
143 |
+
"loss": 0.8218,
|
144 |
+
"mean_token_accuracy": 0.7606669951255678,
|
145 |
+
"step": 17
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.10650887573964497,
|
149 |
+
"grad_norm": 0.7209527833538277,
|
150 |
+
"learning_rate": 1.9997864167879313e-05,
|
151 |
+
"loss": 0.7897,
|
152 |
+
"mean_token_accuracy": 0.7669743964292547,
|
153 |
+
"step": 18
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.11242603550295859,
|
157 |
+
"grad_norm": 0.6903745592521859,
|
158 |
+
"learning_rate": 1.999145758387301e-05,
|
159 |
+
"loss": 0.7984,
|
160 |
+
"mean_token_accuracy": 0.7647671686022387,
|
161 |
+
"step": 19
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.11834319526627218,
|
165 |
+
"grad_norm": 0.6167859283406073,
|
166 |
+
"learning_rate": 1.9980782984658682e-05,
|
167 |
+
"loss": 0.7898,
|
168 |
+
"mean_token_accuracy": 0.7661677740213927,
|
169 |
+
"step": 20
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.1242603550295858,
|
173 |
+
"grad_norm": 0.6108563732156459,
|
174 |
+
"learning_rate": 1.99658449300667e-05,
|
175 |
+
"loss": 0.804,
|
176 |
+
"mean_token_accuracy": 0.7611782591111235,
|
177 |
+
"step": 21
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.1301775147928994,
|
181 |
+
"grad_norm": 0.5746908311619029,
|
182 |
+
"learning_rate": 1.994664980113243e-05,
|
183 |
+
"loss": 0.7744,
|
184 |
+
"mean_token_accuracy": 0.7691396065844442,
|
185 |
+
"step": 22
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.13609467455621302,
|
189 |
+
"grad_norm": 0.5345761647636947,
|
190 |
+
"learning_rate": 1.992320579737045e-05,
|
191 |
+
"loss": 0.7749,
|
192 |
+
"mean_token_accuracy": 0.7685584775159877,
|
193 |
+
"step": 23
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.14201183431952663,
|
197 |
+
"grad_norm": 0.5299656484934693,
|
198 |
+
"learning_rate": 1.9895522933272028e-05,
|
199 |
+
"loss": 0.7621,
|
200 |
+
"mean_token_accuracy": 0.7722506630953709,
|
201 |
+
"step": 24
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.14792899408284024,
|
205 |
+
"grad_norm": 0.63083763621396,
|
206 |
+
"learning_rate": 1.9863613034027224e-05,
|
207 |
+
"loss": 0.7868,
|
208 |
+
"mean_token_accuracy": 0.7644846690458883,
|
209 |
+
"step": 25
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.15384615384615385,
|
213 |
+
"grad_norm": 0.4511582029139769,
|
214 |
+
"learning_rate": 1.9827489730473597e-05,
|
215 |
+
"loss": 0.7752,
|
216 |
+
"mean_token_accuracy": 0.7683559567285383,
|
217 |
+
"step": 26
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 0.15976331360946747,
|
221 |
+
"grad_norm": 0.5080850847922778,
|
222 |
+
"learning_rate": 1.9787168453273546e-05,
|
223 |
+
"loss": 0.7903,
|
224 |
+
"mean_token_accuracy": 0.7631548471555147,
|
225 |
+
"step": 27
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.16568047337278108,
|
229 |
+
"grad_norm": 0.417117734277003,
|
230 |
+
"learning_rate": 1.9742666426322877e-05,
|
231 |
+
"loss": 0.743,
|
232 |
+
"mean_token_accuracy": 0.7766788822768681,
|
233 |
+
"step": 28
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.17159763313609466,
|
237 |
+
"grad_norm": 0.4254796366932393,
|
238 |
+
"learning_rate": 1.9694002659393306e-05,
|
239 |
+
"loss": 0.7702,
|
240 |
+
"mean_token_accuracy": 0.7695522126025716,
|
241 |
+
"step": 29
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.17751479289940827,
|
245 |
+
"grad_norm": 0.41986449808823745,
|
246 |
+
"learning_rate": 1.9641197940012136e-05,
|
247 |
+
"loss": 0.7586,
|
248 |
+
"mean_token_accuracy": 0.7721289278577101,
|
249 |
+
"step": 30
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.1834319526627219,
|
253 |
+
"grad_norm": 0.4695562943601462,
|
254 |
+
"learning_rate": 1.958427482458253e-05,
|
255 |
+
"loss": 0.7539,
|
256 |
+
"mean_token_accuracy": 0.7716929613553958,
|
257 |
+
"step": 31
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.1893491124260355,
|
261 |
+
"grad_norm": 0.3921409409899768,
|
262 |
+
"learning_rate": 1.9523257628748148e-05,
|
263 |
+
"loss": 0.7568,
|
264 |
+
"mean_token_accuracy": 0.7717328096419696,
|
265 |
+
"step": 32
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 0.1952662721893491,
|
269 |
+
"grad_norm": 0.4160967346901947,
|
270 |
+
"learning_rate": 1.9458172417006347e-05,
|
271 |
+
"loss": 0.7409,
|
272 |
+
"mean_token_accuracy": 0.7751419508476135,
|
273 |
+
"step": 33
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.20118343195266272,
|
277 |
+
"grad_norm": 0.43718343180505526,
|
278 |
+
"learning_rate": 1.9389046991574298e-05,
|
279 |
+
"loss": 0.7344,
|
280 |
+
"mean_token_accuracy": 0.778526386835722,
|
281 |
+
"step": 34
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.20710059171597633,
|
285 |
+
"grad_norm": 0.396451454218149,
|
286 |
+
"learning_rate": 1.9315910880512792e-05,
|
287 |
+
"loss": 0.7585,
|
288 |
+
"mean_token_accuracy": 0.7704364168416742,
|
289 |
+
"step": 35
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.21301775147928995,
|
293 |
+
"grad_norm": 0.4531112283882146,
|
294 |
+
"learning_rate": 1.9238795325112867e-05,
|
295 |
+
"loss": 0.7255,
|
296 |
+
"mean_token_accuracy": 0.7800096489081426,
|
297 |
+
"step": 36
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.21893491124260356,
|
301 |
+
"grad_norm": 0.4003679262358476,
|
302 |
+
"learning_rate": 1.9157733266550577e-05,
|
303 |
+
"loss": 0.7251,
|
304 |
+
"mean_token_accuracy": 0.779636766062183,
|
305 |
+
"step": 37
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.22485207100591717,
|
309 |
+
"grad_norm": 0.4019998494369348,
|
310 |
+
"learning_rate": 1.9072759331815602e-05,
|
311 |
+
"loss": 0.7325,
|
312 |
+
"mean_token_accuracy": 0.7773937936524439,
|
313 |
+
"step": 38
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 0.23076923076923078,
|
317 |
+
"grad_norm": 0.4247947978619282,
|
318 |
+
"learning_rate": 1.898390981891979e-05,
|
319 |
+
"loss": 0.7396,
|
320 |
+
"mean_token_accuracy": 0.7757475726810331,
|
321 |
+
"step": 39
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.23668639053254437,
|
325 |
+
"grad_norm": 0.3801393695192698,
|
326 |
+
"learning_rate": 1.8891222681391853e-05,
|
327 |
+
"loss": 0.7422,
|
328 |
+
"mean_token_accuracy": 0.7750002370873404,
|
329 |
+
"step": 40
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.24260355029585798,
|
333 |
+
"grad_norm": 0.37960651070834583,
|
334 |
+
"learning_rate": 1.879473751206489e-05,
|
335 |
+
"loss": 0.7159,
|
336 |
+
"mean_token_accuracy": 0.7815920659071619,
|
337 |
+
"step": 41
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"epoch": 0.2485207100591716,
|
341 |
+
"grad_norm": 0.4177406473529506,
|
342 |
+
"learning_rate": 1.869449552616367e-05,
|
343 |
+
"loss": 0.7583,
|
344 |
+
"mean_token_accuracy": 0.7707519109077099,
|
345 |
+
"step": 42
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.25443786982248523,
|
349 |
+
"grad_norm": 0.36011706007184574,
|
350 |
+
"learning_rate": 1.8590539543698852e-05,
|
351 |
+
"loss": 0.7201,
|
352 |
+
"mean_token_accuracy": 0.7804437519430654,
|
353 |
+
"step": 43
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.2603550295857988,
|
357 |
+
"grad_norm": 0.37037523132050293,
|
358 |
+
"learning_rate": 1.8482913971175737e-05,
|
359 |
+
"loss": 0.6911,
|
360 |
+
"mean_token_accuracy": 0.789738280938329,
|
361 |
+
"step": 44
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.26627218934911245,
|
365 |
+
"grad_norm": 0.4354182756113773,
|
366 |
+
"learning_rate": 1.8371664782625287e-05,
|
367 |
+
"loss": 0.7426,
|
368 |
+
"mean_token_accuracy": 0.7737875964292505,
|
369 |
+
"step": 45
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.27218934911242604,
|
373 |
+
"grad_norm": 0.38980814844589723,
|
374 |
+
"learning_rate": 1.825683949996556e-05,
|
375 |
+
"loss": 0.7399,
|
376 |
+
"mean_token_accuracy": 0.7748932065512412,
|
377 |
+
"step": 46
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.2781065088757396,
|
381 |
+
"grad_norm": 0.39132094117790983,
|
382 |
+
"learning_rate": 1.813848717270195e-05,
|
383 |
+
"loss": 0.7008,
|
384 |
+
"mean_token_accuracy": 0.7860000963532652,
|
385 |
+
"step": 47
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 0.28402366863905326,
|
389 |
+
"grad_norm": 0.38848469099488886,
|
390 |
+
"learning_rate": 1.8016658356974885e-05,
|
391 |
+
"loss": 0.7164,
|
392 |
+
"mean_token_accuracy": 0.7800342185812585,
|
393 |
+
"step": 48
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.28994082840236685,
|
397 |
+
"grad_norm": 0.3636566412524122,
|
398 |
+
"learning_rate": 1.789140509396394e-05,
|
399 |
+
"loss": 0.7212,
|
400 |
+
"mean_token_accuracy": 0.7796801488922436,
|
401 |
+
"step": 49
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.2958579881656805,
|
405 |
+
"grad_norm": 0.4246224936998959,
|
406 |
+
"learning_rate": 1.7762780887657576e-05,
|
407 |
+
"loss": 0.7319,
|
408 |
+
"mean_token_accuracy": 0.7770798628956391,
|
409 |
+
"step": 50
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.30177514792899407,
|
413 |
+
"grad_norm": 0.35464674247563077,
|
414 |
+
"learning_rate": 1.7630840681998068e-05,
|
415 |
+
"loss": 0.7278,
|
416 |
+
"mean_token_accuracy": 0.7782958063801806,
|
417 |
+
"step": 51
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.3076923076923077,
|
421 |
+
"grad_norm": 0.3838835290476431,
|
422 |
+
"learning_rate": 1.7495640837411265e-05,
|
423 |
+
"loss": 0.7276,
|
424 |
+
"mean_token_accuracy": 0.778110788518626,
|
425 |
+
"step": 52
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.3136094674556213,
|
429 |
+
"grad_norm": 0.39823260845501735,
|
430 |
+
"learning_rate": 1.735723910673132e-05,
|
431 |
+
"loss": 0.6969,
|
432 |
+
"mean_token_accuracy": 0.7861765198226371,
|
433 |
+
"step": 53
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.31952662721893493,
|
437 |
+
"grad_norm": 0.3616285119296811,
|
438 |
+
"learning_rate": 1.7215694610530624e-05,
|
439 |
+
"loss": 0.7267,
|
440 |
+
"mean_token_accuracy": 0.7780276231344528,
|
441 |
+
"step": 54
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.3254437869822485,
|
445 |
+
"grad_norm": 0.3564476104670264,
|
446 |
+
"learning_rate": 1.7071067811865477e-05,
|
447 |
+
"loss": 0.7084,
|
448 |
+
"mean_token_accuracy": 0.7837116023048635,
|
449 |
+
"step": 55
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.33136094674556216,
|
453 |
+
"grad_norm": 0.44035089633256974,
|
454 |
+
"learning_rate": 1.6923420490448298e-05,
|
455 |
+
"loss": 0.7342,
|
456 |
+
"mean_token_accuracy": 0.776648161332027,
|
457 |
+
"step": 56
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.33727810650887574,
|
461 |
+
"grad_norm": 0.39248432764207875,
|
462 |
+
"learning_rate": 1.6772815716257414e-05,
|
463 |
+
"loss": 0.725,
|
464 |
+
"mean_token_accuracy": 0.7786816515421023,
|
465 |
+
"step": 57
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.3431952662721893,
|
469 |
+
"grad_norm": 0.36704706608942483,
|
470 |
+
"learning_rate": 1.6619317822595666e-05,
|
471 |
+
"loss": 0.7017,
|
472 |
+
"mean_token_accuracy": 0.7841417427362292,
|
473 |
+
"step": 58
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.34911242603550297,
|
477 |
+
"grad_norm": 0.40512498191045965,
|
478 |
+
"learning_rate": 1.646299237860941e-05,
|
479 |
+
"loss": 0.75,
|
480 |
+
"mean_token_accuracy": 0.7708883209035493,
|
481 |
+
"step": 59
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.35502958579881655,
|
485 |
+
"grad_norm": 0.39029160023670084,
|
486 |
+
"learning_rate": 1.6303906161279554e-05,
|
487 |
+
"loss": 0.7279,
|
488 |
+
"mean_token_accuracy": 0.7775349237600122,
|
489 |
+
"step": 60
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.3609467455621302,
|
493 |
+
"grad_norm": 0.3953993708954393,
|
494 |
+
"learning_rate": 1.6142127126896682e-05,
|
495 |
+
"loss": 0.7356,
|
496 |
+
"mean_token_accuracy": 0.7745875530129677,
|
497 |
+
"step": 61
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.3668639053254438,
|
501 |
+
"grad_norm": 0.36256710216714955,
|
502 |
+
"learning_rate": 1.597772438203241e-05,
|
503 |
+
"loss": 0.6997,
|
504 |
+
"mean_token_accuracy": 0.7848896531840401,
|
505 |
+
"step": 62
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 0.3727810650887574,
|
509 |
+
"grad_norm": 0.40962620829800644,
|
510 |
+
"learning_rate": 1.5810768154019386e-05,
|
511 |
+
"loss": 0.7205,
|
512 |
+
"mean_token_accuracy": 0.7799613349100392,
|
513 |
+
"step": 63
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.378698224852071,
|
517 |
+
"grad_norm": 0.3828488838066985,
|
518 |
+
"learning_rate": 1.5641329760952514e-05,
|
519 |
+
"loss": 0.708,
|
520 |
+
"mean_token_accuracy": 0.782232443701145,
|
521 |
+
"step": 64
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.38461538461538464,
|
525 |
+
"grad_norm": 0.39122763310454406,
|
526 |
+
"learning_rate": 1.5469481581224274e-05,
|
527 |
+
"loss": 0.7074,
|
528 |
+
"mean_token_accuracy": 0.7819801124070774,
|
529 |
+
"step": 65
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.3905325443786982,
|
533 |
+
"grad_norm": 0.3910386124912464,
|
534 |
+
"learning_rate": 1.529529702260709e-05,
|
535 |
+
"loss": 0.7318,
|
536 |
+
"mean_token_accuracy": 0.7753433511222331,
|
537 |
+
"step": 66
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.39644970414201186,
|
541 |
+
"grad_norm": 0.3880043071649847,
|
542 |
+
"learning_rate": 1.5118850490896012e-05,
|
543 |
+
"loss": 0.7191,
|
544 |
+
"mean_token_accuracy": 0.7791978555083022,
|
545 |
+
"step": 67
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.40236686390532544,
|
549 |
+
"grad_norm": 0.348781202358635,
|
550 |
+
"learning_rate": 1.4940217358125042e-05,
|
551 |
+
"loss": 0.6978,
|
552 |
+
"mean_token_accuracy": 0.785919046763025,
|
553 |
+
"step": 68
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 0.40828402366863903,
|
557 |
+
"grad_norm": 0.34785888550803656,
|
558 |
+
"learning_rate": 1.4759473930370738e-05,
|
559 |
+
"loss": 0.6923,
|
560 |
+
"mean_token_accuracy": 0.787418621224268,
|
561 |
+
"step": 69
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.41420118343195267,
|
565 |
+
"grad_norm": 0.3653232305381835,
|
566 |
+
"learning_rate": 1.4576697415156818e-05,
|
567 |
+
"loss": 0.6912,
|
568 |
+
"mean_token_accuracy": 0.7869110504306804,
|
569 |
+
"step": 70
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.42011834319526625,
|
573 |
+
"grad_norm": 0.36764315457311614,
|
574 |
+
"learning_rate": 1.4391965888473705e-05,
|
575 |
+
"loss": 0.6991,
|
576 |
+
"mean_token_accuracy": 0.7839725057156516,
|
577 |
+
"step": 71
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.4260355029585799,
|
581 |
+
"grad_norm": 0.3514136440565239,
|
582 |
+
"learning_rate": 1.4205358261427076e-05,
|
583 |
+
"loss": 0.7149,
|
584 |
+
"mean_token_accuracy": 0.7796496659579735,
|
585 |
+
"step": 72
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.4319526627218935,
|
589 |
+
"grad_norm": 0.3686893566061322,
|
590 |
+
"learning_rate": 1.4016954246529697e-05,
|
591 |
+
"loss": 0.7197,
|
592 |
+
"mean_token_accuracy": 0.7794793514235452,
|
593 |
+
"step": 73
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.4378698224852071,
|
597 |
+
"grad_norm": 0.34605681231940283,
|
598 |
+
"learning_rate": 1.3826834323650899e-05,
|
599 |
+
"loss": 0.687,
|
600 |
+
"mean_token_accuracy": 0.7897891867600086,
|
601 |
+
"step": 74
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 0.4437869822485207,
|
605 |
+
"grad_norm": 0.369433655454952,
|
606 |
+
"learning_rate": 1.3635079705638298e-05,
|
607 |
+
"loss": 0.7018,
|
608 |
+
"mean_token_accuracy": 0.7843400450532293,
|
609 |
+
"step": 75
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.44970414201183434,
|
613 |
+
"grad_norm": 0.3637775910740719,
|
614 |
+
"learning_rate": 1.3441772303626387e-05,
|
615 |
+
"loss": 0.6811,
|
616 |
+
"mean_token_accuracy": 0.7883583477300129,
|
617 |
+
"step": 76
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 0.4556213017751479,
|
621 |
+
"grad_norm": 0.3552805600165443,
|
622 |
+
"learning_rate": 1.3246994692046837e-05,
|
623 |
+
"loss": 0.6877,
|
624 |
+
"mean_token_accuracy": 0.7883414815445715,
|
625 |
+
"step": 77
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.46153846153846156,
|
629 |
+
"grad_norm": 0.42418323654238854,
|
630 |
+
"learning_rate": 1.305083007335549e-05,
|
631 |
+
"loss": 0.7307,
|
632 |
+
"mean_token_accuracy": 0.7747076789831797,
|
633 |
+
"step": 78
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.46745562130177515,
|
637 |
+
"grad_norm": 0.35584440430369396,
|
638 |
+
"learning_rate": 1.2853362242491054e-05,
|
639 |
+
"loss": 0.7317,
|
640 |
+
"mean_token_accuracy": 0.7756405018053134,
|
641 |
+
"step": 79
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.47337278106508873,
|
645 |
+
"grad_norm": 0.3233937276689462,
|
646 |
+
"learning_rate": 1.2654675551080724e-05,
|
647 |
+
"loss": 0.6992,
|
648 |
+
"mean_token_accuracy": 0.7849270935923538,
|
649 |
+
"step": 80
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.47928994082840237,
|
653 |
+
"grad_norm": 0.350970039014215,
|
654 |
+
"learning_rate": 1.2454854871407993e-05,
|
655 |
+
"loss": 0.7107,
|
656 |
+
"mean_token_accuracy": 0.781704652022156,
|
657 |
+
"step": 81
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.48520710059171596,
|
661 |
+
"grad_norm": 0.35166716550940014,
|
662 |
+
"learning_rate": 1.2253985560158064e-05,
|
663 |
+
"loss": 0.694,
|
664 |
+
"mean_token_accuracy": 0.7867224592606594,
|
665 |
+
"step": 82
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 0.4911242603550296,
|
669 |
+
"grad_norm": 0.3655542868183894,
|
670 |
+
"learning_rate": 1.2052153421956343e-05,
|
671 |
+
"loss": 0.6913,
|
672 |
+
"mean_token_accuracy": 0.7868167246531167,
|
673 |
+
"step": 83
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 0.4970414201183432,
|
677 |
+
"grad_norm": 0.37786152221461855,
|
678 |
+
"learning_rate": 1.1849444672715587e-05,
|
679 |
+
"loss": 0.7265,
|
680 |
+
"mean_token_accuracy": 0.776165643284536,
|
681 |
+
"step": 84
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.5029585798816568,
|
685 |
+
"grad_norm": 0.34932873765751665,
|
686 |
+
"learning_rate": 1.164594590280734e-05,
|
687 |
+
"loss": 0.711,
|
688 |
+
"mean_token_accuracy": 0.7806680330763345,
|
689 |
+
"step": 85
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.5088757396449705,
|
693 |
+
"grad_norm": 0.3539261852137339,
|
694 |
+
"learning_rate": 1.1441744040073469e-05,
|
695 |
+
"loss": 0.7165,
|
696 |
+
"mean_token_accuracy": 0.7788759918792447,
|
697 |
+
"step": 86
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.514792899408284,
|
701 |
+
"grad_norm": 0.3395798470618678,
|
702 |
+
"learning_rate": 1.123692631269348e-05,
|
703 |
+
"loss": 0.6997,
|
704 |
+
"mean_token_accuracy": 0.7835249742198639,
|
705 |
+
"step": 87
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.5207100591715976,
|
709 |
+
"grad_norm": 0.3411316208847806,
|
710 |
+
"learning_rate": 1.103158021192357e-05,
|
711 |
+
"loss": 0.6958,
|
712 |
+
"mean_token_accuracy": 0.7860397200235923,
|
713 |
+
"step": 88
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 0.5266272189349113,
|
717 |
+
"grad_norm": 0.3619282034457249,
|
718 |
+
"learning_rate": 1.0825793454723325e-05,
|
719 |
+
"loss": 0.7052,
|
720 |
+
"mean_token_accuracy": 0.7834187886797611,
|
721 |
+
"step": 89
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.5325443786982249,
|
725 |
+
"grad_norm": 0.34273872199347044,
|
726 |
+
"learning_rate": 1.0619653946285948e-05,
|
727 |
+
"loss": 0.685,
|
728 |
+
"mean_token_accuracy": 0.7897067821918299,
|
729 |
+
"step": 90
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.5384615384615384,
|
733 |
+
"grad_norm": 0.33199715753976633,
|
734 |
+
"learning_rate": 1.0413249742488132e-05,
|
735 |
+
"loss": 0.6917,
|
736 |
+
"mean_token_accuracy": 0.7872031382647131,
|
737 |
+
"step": 91
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.5443786982248521,
|
741 |
+
"grad_norm": 0.3342393332811213,
|
742 |
+
"learning_rate": 1.0206669012275546e-05,
|
743 |
+
"loss": 0.7011,
|
744 |
+
"mean_token_accuracy": 0.784091056433467,
|
745 |
+
"step": 92
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.5502958579881657,
|
749 |
+
"grad_norm": 0.33611685834665483,
|
750 |
+
"learning_rate": 1e-05,
|
751 |
+
"loss": 0.7156,
|
752 |
+
"mean_token_accuracy": 0.7788634871573115,
|
753 |
+
"step": 93
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.5562130177514792,
|
757 |
+
"grad_norm": 0.33795640856270726,
|
758 |
+
"learning_rate": 9.79333098772446e-06,
|
759 |
+
"loss": 0.6843,
|
760 |
+
"mean_token_accuracy": 0.7874877928517997,
|
761 |
+
"step": 94
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.5621301775147929,
|
765 |
+
"grad_norm": 0.3553103385556057,
|
766 |
+
"learning_rate": 9.586750257511868e-06,
|
767 |
+
"loss": 0.684,
|
768 |
+
"mean_token_accuracy": 0.7891702815425776,
|
769 |
+
"step": 95
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.5680473372781065,
|
773 |
+
"grad_norm": 0.3599899819769442,
|
774 |
+
"learning_rate": 9.380346053714055e-06,
|
775 |
+
"loss": 0.6809,
|
776 |
+
"mean_token_accuracy": 0.7879558819894679,
|
777 |
+
"step": 96
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.5739644970414202,
|
781 |
+
"grad_norm": 0.33562142706566866,
|
782 |
+
"learning_rate": 9.174206545276678e-06,
|
783 |
+
"loss": 0.6732,
|
784 |
+
"mean_token_accuracy": 0.7917185320065199,
|
785 |
+
"step": 97
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 0.5798816568047337,
|
789 |
+
"grad_norm": 0.33455633173601695,
|
790 |
+
"learning_rate": 8.968419788076431e-06,
|
791 |
+
"loss": 0.6957,
|
792 |
+
"mean_token_accuracy": 0.7847382398115799,
|
793 |
+
"step": 98
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.5857988165680473,
|
797 |
+
"grad_norm": 0.3490744063204216,
|
798 |
+
"learning_rate": 8.763073687306523e-06,
|
799 |
+
"loss": 0.6924,
|
800 |
+
"mean_token_accuracy": 0.7862588216550412,
|
801 |
+
"step": 99
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.591715976331361,
|
805 |
+
"grad_norm": 0.33348768096991704,
|
806 |
+
"learning_rate": 8.558255959926533e-06,
|
807 |
+
"loss": 0.6992,
|
808 |
+
"mean_token_accuracy": 0.7847955930336572,
|
809 |
+
"step": 100
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.591715976331361,
|
813 |
+
"eval_loss": 0.7157539129257202,
|
814 |
+
"eval_mean_token_accuracy": 0.7586642623023677,
|
815 |
+
"eval_runtime": 4.8665,
|
816 |
+
"eval_samples_per_second": 26.508,
|
817 |
+
"eval_steps_per_second": 1.027,
|
818 |
+
"step": 100
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.5976331360946746,
|
822 |
+
"grad_norm": 0.33075937472785844,
|
823 |
+
"learning_rate": 8.35405409719266e-06,
|
824 |
+
"loss": 0.6872,
|
825 |
+
"mean_token_accuracy": 0.787283402091289,
|
826 |
+
"step": 101
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 0.6035502958579881,
|
830 |
+
"grad_norm": 0.3590337795434198,
|
831 |
+
"learning_rate": 8.150555327284417e-06,
|
832 |
+
"loss": 0.6861,
|
833 |
+
"mean_token_accuracy": 0.7881656395518974,
|
834 |
+
"step": 102
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 0.6094674556213018,
|
838 |
+
"grad_norm": 0.3243096344713308,
|
839 |
+
"learning_rate": 7.947846578043658e-06,
|
840 |
+
"loss": 0.687,
|
841 |
+
"mean_token_accuracy": 0.7868769866991424,
|
842 |
+
"step": 103
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.6153846153846154,
|
846 |
+
"grad_norm": 0.31809647789793993,
|
847 |
+
"learning_rate": 7.746014439841941e-06,
|
848 |
+
"loss": 0.7024,
|
849 |
+
"mean_token_accuracy": 0.7840864820127753,
|
850 |
+
"step": 104
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.621301775147929,
|
854 |
+
"grad_norm": 0.3237845217614286,
|
855 |
+
"learning_rate": 7.545145128592009e-06,
|
856 |
+
"loss": 0.674,
|
857 |
+
"mean_token_accuracy": 0.7901693771106895,
|
858 |
+
"step": 105
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.6272189349112426,
|
862 |
+
"grad_norm": 0.31884492713723883,
|
863 |
+
"learning_rate": 7.34532444891928e-06,
|
864 |
+
"loss": 0.6972,
|
865 |
+
"mean_token_accuracy": 0.7838730344185979,
|
866 |
+
"step": 106
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.6331360946745562,
|
870 |
+
"grad_norm": 0.3250725158937223,
|
871 |
+
"learning_rate": 7.14663775750895e-06,
|
872 |
+
"loss": 0.7351,
|
873 |
+
"mean_token_accuracy": 0.7743010028506793,
|
874 |
+
"step": 107
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 0.6390532544378699,
|
878 |
+
"grad_norm": 0.34110974065150124,
|
879 |
+
"learning_rate": 6.949169926644513e-06,
|
880 |
+
"loss": 0.7011,
|
881 |
+
"mean_token_accuracy": 0.783713761454518,
|
882 |
+
"step": 108
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"epoch": 0.6449704142011834,
|
886 |
+
"grad_norm": 0.31095600200622964,
|
887 |
+
"learning_rate": 6.7530053079531664e-06,
|
888 |
+
"loss": 0.7021,
|
889 |
+
"mean_token_accuracy": 0.7831529561955156,
|
890 |
+
"step": 109
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.650887573964497,
|
894 |
+
"grad_norm": 0.31355515565609077,
|
895 |
+
"learning_rate": 6.558227696373617e-06,
|
896 |
+
"loss": 0.6887,
|
897 |
+
"mean_token_accuracy": 0.7874667036092751,
|
898 |
+
"step": 110
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.6568047337278107,
|
902 |
+
"grad_norm": 0.329751885795174,
|
903 |
+
"learning_rate": 6.364920294361701e-06,
|
904 |
+
"loss": 0.709,
|
905 |
+
"mean_token_accuracy": 0.7815413361996215,
|
906 |
+
"step": 111
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.6627218934911243,
|
910 |
+
"grad_norm": 0.30882694735110866,
|
911 |
+
"learning_rate": 6.173165676349103e-06,
|
912 |
+
"loss": 0.7062,
|
913 |
+
"mean_token_accuracy": 0.7818792436067044,
|
914 |
+
"step": 112
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.6686390532544378,
|
918 |
+
"grad_norm": 0.3191082129763723,
|
919 |
+
"learning_rate": 5.983045753470308e-06,
|
920 |
+
"loss": 0.6882,
|
921 |
+
"mean_token_accuracy": 0.7865235373585306,
|
922 |
+
"step": 113
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 0.6745562130177515,
|
926 |
+
"grad_norm": 0.32856595537873384,
|
927 |
+
"learning_rate": 5.794641738572925e-06,
|
928 |
+
"loss": 0.6838,
|
929 |
+
"mean_token_accuracy": 0.7889740840283941,
|
930 |
+
"step": 114
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"epoch": 0.6804733727810651,
|
934 |
+
"grad_norm": 0.3147396913003447,
|
935 |
+
"learning_rate": 5.608034111526298e-06,
|
936 |
+
"loss": 0.6694,
|
937 |
+
"mean_token_accuracy": 0.7932459708127269,
|
938 |
+
"step": 115
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.6863905325443787,
|
942 |
+
"grad_norm": 0.3428397687955701,
|
943 |
+
"learning_rate": 5.423302584843186e-06,
|
944 |
+
"loss": 0.7074,
|
945 |
+
"mean_token_accuracy": 0.7825890227644128,
|
946 |
+
"step": 116
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 0.6923076923076923,
|
950 |
+
"grad_norm": 0.30279217397028946,
|
951 |
+
"learning_rate": 5.240526069629265e-06,
|
952 |
+
"loss": 0.6784,
|
953 |
+
"mean_token_accuracy": 0.7906955891603145,
|
954 |
+
"step": 117
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.6982248520710059,
|
958 |
+
"grad_norm": 0.3003758212327991,
|
959 |
+
"learning_rate": 5.059782641874962e-06,
|
960 |
+
"loss": 0.6819,
|
961 |
+
"mean_token_accuracy": 0.7889431193959375,
|
962 |
+
"step": 118
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.7041420118343196,
|
966 |
+
"grad_norm": 0.31649740332350773,
|
967 |
+
"learning_rate": 4.881149509103993e-06,
|
968 |
+
"loss": 0.6816,
|
969 |
+
"mean_token_accuracy": 0.7894825257236546,
|
970 |
+
"step": 119
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.7100591715976331,
|
974 |
+
"grad_norm": 0.3141834954228162,
|
975 |
+
"learning_rate": 4.704702977392914e-06,
|
976 |
+
"loss": 0.6549,
|
977 |
+
"mean_token_accuracy": 0.7973338512758128,
|
978 |
+
"step": 120
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 0.7159763313609467,
|
982 |
+
"grad_norm": 0.3146743815009587,
|
983 |
+
"learning_rate": 4.530518418775734e-06,
|
984 |
+
"loss": 0.6995,
|
985 |
+
"mean_token_accuracy": 0.7840122749260579,
|
986 |
+
"step": 121
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.7218934911242604,
|
990 |
+
"grad_norm": 0.31485965487518236,
|
991 |
+
"learning_rate": 4.35867023904749e-06,
|
992 |
+
"loss": 0.683,
|
993 |
+
"mean_token_accuracy": 0.7888863658938954,
|
994 |
+
"step": 122
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 0.727810650887574,
|
998 |
+
"grad_norm": 0.31400988808245894,
|
999 |
+
"learning_rate": 4.189231845980618e-06,
|
1000 |
+
"loss": 0.675,
|
1001 |
+
"mean_token_accuracy": 0.7907750008695696,
|
1002 |
+
"step": 123
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"epoch": 0.7337278106508875,
|
1006 |
+
"grad_norm": 0.31249917487430845,
|
1007 |
+
"learning_rate": 4.0222756179675915e-06,
|
1008 |
+
"loss": 0.6814,
|
1009 |
+
"mean_token_accuracy": 0.7889693618490632,
|
1010 |
+
"step": 124
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.7396449704142012,
|
1014 |
+
"grad_norm": 0.3200490939966776,
|
1015 |
+
"learning_rate": 3.857872873103322e-06,
|
1016 |
+
"loss": 0.7015,
|
1017 |
+
"mean_token_accuracy": 0.7827075366904457,
|
1018 |
+
"step": 125
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.7455621301775148,
|
1022 |
+
"grad_norm": 0.3355400247789273,
|
1023 |
+
"learning_rate": 3.69609383872045e-06,
|
1024 |
+
"loss": 0.7009,
|
1025 |
+
"mean_token_accuracy": 0.7832582153821204,
|
1026 |
+
"step": 126
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.7514792899408284,
|
1030 |
+
"grad_norm": 0.305679884120639,
|
1031 |
+
"learning_rate": 3.5370076213905904e-06,
|
1032 |
+
"loss": 0.6787,
|
1033 |
+
"mean_token_accuracy": 0.790282171142539,
|
1034 |
+
"step": 127
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.757396449704142,
|
1038 |
+
"grad_norm": 0.30051476204613337,
|
1039 |
+
"learning_rate": 3.380682177404335e-06,
|
1040 |
+
"loss": 0.6965,
|
1041 |
+
"mean_token_accuracy": 0.7849160254658745,
|
1042 |
+
"step": 128
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 0.7633136094674556,
|
1046 |
+
"grad_norm": 0.31059288083076164,
|
1047 |
+
"learning_rate": 3.2271842837425917e-06,
|
1048 |
+
"loss": 0.7068,
|
1049 |
+
"mean_token_accuracy": 0.7814057339178149,
|
1050 |
+
"step": 129
|
1051 |
+
},
|
1052 |
+
{
|
1053 |
+
"epoch": 0.7692307692307693,
|
1054 |
+
"grad_norm": 0.30761030210291535,
|
1055 |
+
"learning_rate": 3.0765795095517026e-06,
|
1056 |
+
"loss": 0.671,
|
1057 |
+
"mean_token_accuracy": 0.7930299117720654,
|
1058 |
+
"step": 130
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.7751479289940828,
|
1062 |
+
"grad_norm": 0.31294726987243277,
|
1063 |
+
"learning_rate": 2.9289321881345257e-06,
|
1064 |
+
"loss": 0.7006,
|
1065 |
+
"mean_token_accuracy": 0.7824703704600162,
|
1066 |
+
"step": 131
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.7810650887573964,
|
1070 |
+
"grad_norm": 0.32317729195664163,
|
1071 |
+
"learning_rate": 2.7843053894693805e-06,
|
1072 |
+
"loss": 0.7152,
|
1073 |
+
"mean_token_accuracy": 0.7791240758955355,
|
1074 |
+
"step": 132
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.7869822485207101,
|
1078 |
+
"grad_norm": 0.2961077123206801,
|
1079 |
+
"learning_rate": 2.642760893268684e-06,
|
1080 |
+
"loss": 0.6914,
|
1081 |
+
"mean_token_accuracy": 0.7868451333562997,
|
1082 |
+
"step": 133
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.7928994082840237,
|
1086 |
+
"grad_norm": 0.3079418866041373,
|
1087 |
+
"learning_rate": 2.504359162588741e-06,
|
1088 |
+
"loss": 0.6841,
|
1089 |
+
"mean_token_accuracy": 0.7884792735031155,
|
1090 |
+
"step": 134
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.7988165680473372,
|
1094 |
+
"grad_norm": 0.3037332779693865,
|
1095 |
+
"learning_rate": 2.369159318001937e-06,
|
1096 |
+
"loss": 0.6988,
|
1097 |
+
"mean_token_accuracy": 0.7842482711786377,
|
1098 |
+
"step": 135
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 0.8047337278106509,
|
1102 |
+
"grad_norm": 0.3009627129738944,
|
1103 |
+
"learning_rate": 2.237219112342426e-06,
|
1104 |
+
"loss": 0.6717,
|
1105 |
+
"mean_token_accuracy": 0.7914490102362668,
|
1106 |
+
"step": 136
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.8106508875739645,
|
1110 |
+
"grad_norm": 0.29623020549336865,
|
1111 |
+
"learning_rate": 2.1085949060360654e-06,
|
1112 |
+
"loss": 0.6955,
|
1113 |
+
"mean_token_accuracy": 0.7852500014511501,
|
1114 |
+
"step": 137
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 0.8165680473372781,
|
1118 |
+
"grad_norm": 0.31868412326360324,
|
1119 |
+
"learning_rate": 1.983341643025117e-06,
|
1120 |
+
"loss": 0.7077,
|
1121 |
+
"mean_token_accuracy": 0.7818251421138749,
|
1122 |
+
"step": 138
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.8224852071005917,
|
1126 |
+
"grad_norm": 0.28770049101277134,
|
1127 |
+
"learning_rate": 1.861512827298051e-06,
|
1128 |
+
"loss": 0.6702,
|
1129 |
+
"mean_token_accuracy": 0.7927647650840932,
|
1130 |
+
"step": 139
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.8284023668639053,
|
1134 |
+
"grad_norm": 0.2990059242232171,
|
1135 |
+
"learning_rate": 1.743160500034443e-06,
|
1136 |
+
"loss": 0.698,
|
1137 |
+
"mean_token_accuracy": 0.7854336655349383,
|
1138 |
+
"step": 140
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 0.834319526627219,
|
1142 |
+
"grad_norm": 0.31036052278345283,
|
1143 |
+
"learning_rate": 1.6283352173747148e-06,
|
1144 |
+
"loss": 0.6944,
|
1145 |
+
"mean_token_accuracy": 0.7851812952221086,
|
1146 |
+
"step": 141
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.8402366863905325,
|
1150 |
+
"grad_norm": 0.31687773547502635,
|
1151 |
+
"learning_rate": 1.5170860288242638e-06,
|
1152 |
+
"loss": 0.6934,
|
1153 |
+
"mean_token_accuracy": 0.7867884869373907,
|
1154 |
+
"step": 142
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.8461538461538461,
|
1158 |
+
"grad_norm": 0.30938603900072376,
|
1159 |
+
"learning_rate": 1.409460456301147e-06,
|
1160 |
+
"loss": 0.6795,
|
1161 |
+
"mean_token_accuracy": 0.7895160039493238,
|
1162 |
+
"step": 143
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"epoch": 0.8520710059171598,
|
1166 |
+
"grad_norm": 0.2952536141242446,
|
1167 |
+
"learning_rate": 1.305504473836331e-06,
|
1168 |
+
"loss": 0.6984,
|
1169 |
+
"mean_token_accuracy": 0.7844431538363902,
|
1170 |
+
"step": 144
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"epoch": 0.8579881656804734,
|
1174 |
+
"grad_norm": 0.3057613487662314,
|
1175 |
+
"learning_rate": 1.2052624879351105e-06,
|
1176 |
+
"loss": 0.6808,
|
1177 |
+
"mean_token_accuracy": 0.7889678951582548,
|
1178 |
+
"step": 145
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.863905325443787,
|
1182 |
+
"grad_norm": 0.29097999865599966,
|
1183 |
+
"learning_rate": 1.1087773186081474e-06,
|
1184 |
+
"loss": 0.6841,
|
1185 |
+
"mean_token_accuracy": 0.7886474079309541,
|
1186 |
+
"step": 146
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.8698224852071006,
|
1190 |
+
"grad_norm": 0.3142274595418203,
|
1191 |
+
"learning_rate": 1.0160901810802114e-06,
|
1192 |
+
"loss": 0.6738,
|
1193 |
+
"mean_token_accuracy": 0.7907368421042241,
|
1194 |
+
"step": 147
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 0.8757396449704142,
|
1198 |
+
"grad_norm": 0.2925617205492779,
|
1199 |
+
"learning_rate": 9.272406681844015e-07,
|
1200 |
+
"loss": 0.6709,
|
1201 |
+
"mean_token_accuracy": 0.7922187969571426,
|
1202 |
+
"step": 148
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.8816568047337278,
|
1206 |
+
"grad_norm": 0.27724813470631104,
|
1207 |
+
"learning_rate": 8.42266733449425e-07,
|
1208 |
+
"loss": 0.6858,
|
1209 |
+
"mean_token_accuracy": 0.7878970031830121,
|
1210 |
+
"step": 149
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"epoch": 0.8875739644970414,
|
1214 |
+
"grad_norm": 0.2969141966080097,
|
1215 |
+
"learning_rate": 7.612046748871327e-07,
|
1216 |
+
"loss": 0.6835,
|
1217 |
+
"mean_token_accuracy": 0.7885832175544185,
|
1218 |
+
"step": 150
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"epoch": 0.893491124260355,
|
1222 |
+
"grad_norm": 0.30371772219322385,
|
1223 |
+
"learning_rate": 6.840891194872112e-07,
|
1224 |
+
"loss": 0.6919,
|
1225 |
+
"mean_token_accuracy": 0.7857929535715237,
|
1226 |
+
"step": 151
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.8994082840236687,
|
1230 |
+
"grad_norm": 0.291180674993794,
|
1231 |
+
"learning_rate": 6.109530084257043e-07,
|
1232 |
+
"loss": 0.6767,
|
1233 |
+
"mean_token_accuracy": 0.7914383926503787,
|
1234 |
+
"step": 152
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.9053254437869822,
|
1238 |
+
"grad_norm": 0.29261209458574694,
|
1239 |
+
"learning_rate": 5.418275829936537e-07,
|
1240 |
+
"loss": 0.6726,
|
1241 |
+
"mean_token_accuracy": 0.7907148025796484,
|
1242 |
+
"step": 153
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.9112426035502958,
|
1246 |
+
"grad_norm": 0.2776593810597509,
|
1247 |
+
"learning_rate": 4.7674237125185597e-07,
|
1248 |
+
"loss": 0.674,
|
1249 |
+
"mean_token_accuracy": 0.7914961569221735,
|
1250 |
+
"step": 154
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.9171597633136095,
|
1254 |
+
"grad_norm": 0.28387582813592127,
|
1255 |
+
"learning_rate": 4.1572517541747294e-07,
|
1256 |
+
"loss": 0.6422,
|
1257 |
+
"mean_token_accuracy": 0.8009981820698834,
|
1258 |
+
"step": 155
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.9230769230769231,
|
1262 |
+
"grad_norm": 0.2938250907370977,
|
1263 |
+
"learning_rate": 3.588020599878639e-07,
|
1264 |
+
"loss": 0.6962,
|
1265 |
+
"mean_token_accuracy": 0.7844788274775369,
|
1266 |
+
"step": 156
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"epoch": 0.9289940828402367,
|
1270 |
+
"grad_norm": 0.2804499286030571,
|
1271 |
+
"learning_rate": 3.059973406066963e-07,
|
1272 |
+
"loss": 0.6714,
|
1273 |
+
"mean_token_accuracy": 0.7933834235664327,
|
1274 |
+
"step": 157
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.9349112426035503,
|
1278 |
+
"grad_norm": 0.29640364523794643,
|
1279 |
+
"learning_rate": 2.573335736771254e-07,
|
1280 |
+
"loss": 0.6786,
|
1281 |
+
"mean_token_accuracy": 0.7897013469630543,
|
1282 |
+
"step": 158
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"epoch": 0.9408284023668639,
|
1286 |
+
"grad_norm": 0.2783198872073197,
|
1287 |
+
"learning_rate": 2.1283154672645522e-07,
|
1288 |
+
"loss": 0.6731,
|
1289 |
+
"mean_token_accuracy": 0.7911190417303665,
|
1290 |
+
"step": 159
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.9467455621301775,
|
1294 |
+
"grad_norm": 0.2839659205849638,
|
1295 |
+
"learning_rate": 1.7251026952640583e-07,
|
1296 |
+
"loss": 0.6969,
|
1297 |
+
"mean_token_accuracy": 0.7854169932946689,
|
1298 |
+
"step": 160
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.9526627218934911,
|
1302 |
+
"grad_norm": 0.29734374928559365,
|
1303 |
+
"learning_rate": 1.3638696597277678e-07,
|
1304 |
+
"loss": 0.6764,
|
1305 |
+
"mean_token_accuracy": 0.790571362847956,
|
1306 |
+
"step": 161
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 0.9585798816568047,
|
1310 |
+
"grad_norm": 0.30464858616674234,
|
1311 |
+
"learning_rate": 1.0447706672797264e-07,
|
1312 |
+
"loss": 0.6735,
|
1313 |
+
"mean_token_accuracy": 0.7917316028516589,
|
1314 |
+
"step": 162
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.9644970414201184,
|
1318 |
+
"grad_norm": 0.29012852499944247,
|
1319 |
+
"learning_rate": 7.679420262954984e-08,
|
1320 |
+
"loss": 0.6699,
|
1321 |
+
"mean_token_accuracy": 0.7924379369006603,
|
1322 |
+
"step": 163
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 0.9704142011834319,
|
1326 |
+
"grad_norm": 0.2781835486284672,
|
1327 |
+
"learning_rate": 5.3350198867574424e-08,
|
1328 |
+
"loss": 0.7051,
|
1329 |
+
"mean_token_accuracy": 0.7818380497316074,
|
1330 |
+
"step": 164
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"epoch": 0.9763313609467456,
|
1334 |
+
"grad_norm": 0.2722470698221784,
|
1335 |
+
"learning_rate": 3.4155069933301535e-08,
|
1336 |
+
"loss": 0.6566,
|
1337 |
+
"mean_token_accuracy": 0.7958629252087849,
|
1338 |
+
"step": 165
|
1339 |
+
},
|
1340 |
+
{
|
1341 |
+
"epoch": 0.9822485207100592,
|
1342 |
+
"grad_norm": 0.2853070020591702,
|
1343 |
+
"learning_rate": 1.9217015341318478e-08,
|
1344 |
+
"loss": 0.6902,
|
1345 |
+
"mean_token_accuracy": 0.7868536587227888,
|
1346 |
+
"step": 166
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.9881656804733728,
|
1350 |
+
"grad_norm": 0.28783554756968166,
|
1351 |
+
"learning_rate": 8.542416126989805e-09,
|
1352 |
+
"loss": 0.6799,
|
1353 |
+
"mean_token_accuracy": 0.7887756232646665,
|
1354 |
+
"step": 167
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.9940828402366864,
|
1358 |
+
"grad_norm": 0.2874058567649186,
|
1359 |
+
"learning_rate": 2.1358321206899067e-09,
|
1360 |
+
"loss": 0.703,
|
1361 |
+
"mean_token_accuracy": 0.7823018287164306,
|
1362 |
+
"step": 168
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"epoch": 1.0,
|
1366 |
+
"grad_norm": 0.2792632140682557,
|
1367 |
+
"learning_rate": 0.0,
|
1368 |
+
"loss": 0.6884,
|
1369 |
+
"mean_token_accuracy": 0.7866684149311904,
|
1370 |
+
"step": 169
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 1.0,
|
1374 |
+
"step": 169,
|
1375 |
+
"total_flos": 128380330573824.0,
|
1376 |
+
"train_loss": 0.7332075143001489,
|
1377 |
+
"train_runtime": 1234.0886,
|
1378 |
+
"train_samples_per_second": 17.521,
|
1379 |
+
"train_steps_per_second": 0.137
|
1380 |
+
}
|
1381 |
+
],
|
1382 |
+
"logging_steps": 1,
|
1383 |
+
"max_steps": 169,
|
1384 |
+
"num_input_tokens_seen": 0,
|
1385 |
+
"num_train_epochs": 1,
|
1386 |
+
"save_steps": 500,
|
1387 |
+
"stateful_callbacks": {
|
1388 |
+
"TrainerControl": {
|
1389 |
+
"args": {
|
1390 |
+
"should_epoch_stop": false,
|
1391 |
+
"should_evaluate": false,
|
1392 |
+
"should_log": false,
|
1393 |
+
"should_save": false,
|
1394 |
+
"should_training_stop": false
|
1395 |
+
},
|
1396 |
+
"attributes": {}
|
1397 |
+
}
|
1398 |
+
},
|
1399 |
+
"total_flos": 128380330573824.0,
|
1400 |
+
"train_batch_size": 2,
|
1401 |
+
"trial_name": null,
|
1402 |
+
"trial_params": null
|
1403 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:869dc7548deeed4f628c3d62752333599c26507cbb30cb5c6d9f39df68ffcadf
|
3 |
+
size 7352
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|