Update handler.py
Browse files- handler.py +3 -3
handler.py
CHANGED
@@ -5,7 +5,7 @@ class EndpointHandler:
|
|
5 |
def __init__(self, path=""):
|
6 |
# Load the optimized model
|
7 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
8 |
-
# Create inference pipeline
|
9 |
self.pipeline = pipeline("text-classification", model=path, tokenizer=tokenizer)
|
10 |
|
11 |
def __call__(self, data: str) -> List[List[Dict[str, float]]]:
|
@@ -17,8 +17,8 @@ class EndpointHandler:
|
|
17 |
A list containing the prediction results:
|
18 |
A list of one list, e.g., [[{"label": "LABEL", "score": 0.99}]]
|
19 |
"""
|
20 |
-
#
|
21 |
-
prediction = self.pipeline(data)
|
22 |
|
23 |
# Return the prediction result
|
24 |
return prediction
|
|
|
5 |
def __init__(self, path=""):
|
6 |
# Load the optimized model
|
7 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
8 |
+
# Create inference pipeline for text classification
|
9 |
self.pipeline = pipeline("text-classification", model=path, tokenizer=tokenizer)
|
10 |
|
11 |
def __call__(self, data: str) -> List[List[Dict[str, float]]]:
|
|
|
17 |
A list containing the prediction results:
|
18 |
A list of one list, e.g., [[{"label": "LABEL", "score": 0.99}]]
|
19 |
"""
|
20 |
+
# Pass the data as `text` directly
|
21 |
+
prediction = self.pipeline(text=data)
|
22 |
|
23 |
# Return the prediction result
|
24 |
return prediction
|