Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B") | |
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B") | |
def predict(input_text): | |
"""Generate a response using the Llama model.""" | |
inputs = tokenizer.encode(input_text, return_tensors="pt") | |
outputs = model.generate(inputs, max_length=150, num_return_sequences=1) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Metadata | |
title = "Llama 3.2-3B Model Demonstration" | |
description = """ | |
## How to Use | |
1. Enter a prompt in the input box. | |
2. Click 'Submit' to get the model's response. | |
3. Explore the examples provided for inspiration. | |
## Model Details | |
- **Name:** Llama 3.2-3B | |
- **Capabilities:** Text generation, summarization, translation, etc. | |
This Space demonstrates the capabilities of Meta's Llama 3.2-3B model. | |
""" | |
examples = [ | |
["Generate a summary for: Artificial intelligence is the simulation of human intelligence..."], | |
["Translate the text: Hello, how are you? into French."], | |
["What are the benefits of renewable energy sources?"], | |
["Write a poem about the ocean."], | |
] | |
# Interface | |
def create_interface(): | |
"""Create a Gradio interface for the Llama model.""" | |
return gr.Interface( | |
fn=predict, | |
inputs=gr.Textbox(lines=5, placeholder="Type your input here...", label="Enter your prompt"), | |
outputs=gr.Textbox(label="Model Output"), | |
title=title, | |
description=description, | |
examples=examples, | |
theme="compact" | |
) | |
# Launch the interface | |
interface = create_interface() | |
interface.launch(share=True, server_name="0.0.0.0") | |