yumyum2081's picture
Update app.py
858dae2 verified
import gradio as gr
import os
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
def preprocess_image(image):
return image, gr.State([]), gr.State([]), image
def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.value.append(evt.index)
print(f"TRACKING POINT: {tracking_points.value}")
if point_type == "include":
trackings_input_label.value.append(1)
elif point_type == "exclude":
trackings_input_label.value.append(0)
print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
fraction = 0.02
radius = int(fraction * min(w, h))
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(tracking_points.value):
if trackings_input_label.value[index] == 1:
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
else:
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trackings_input_label, selected_point_map
# Remove all CUDA-specific configurations
torch.autocast(device_type="cpu", dtype=torch.float32).__enter__()
def show_mask(mask, ax, random_color=False, borders=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
combined_images = []
mask_images = []
for i, (mask, score) in enumerate(zip(masks, scores)):
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders)
plt.axis('off')
combined_filename = f"combined_image_{i+1}.jpg"
plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
combined_images.append(combined_filename)
plt.close()
mask_image = np.zeros_like(image, dtype=np.uint8)
mask_layer = (mask > 0).astype(np.uint8) * 255
for c in range(3):
mask_image[:, :, c] = mask_layer
mask_filename = f"mask_image_{i+1}.png"
Image.fromarray(mask_image).save(mask_filename)
mask_images.append(mask_filename)
return combined_images, mask_images
def sam_process(input_image, checkpoint, tracking_points, trackings_input_label):
image = Image.open(input_image)
image = np.array(image.convert("RGB"))
checkpoint_map = {
"tiny": ("./checkpoints/sam2_hiera_tiny.pt", "sam2_hiera_t.yaml"),
"small": ("./checkpoints/sam2_hiera_small.pt", "sam2_hiera_s.yaml"),
"base-plus": ("./checkpoints/sam2_hiera_base_plus.pt", "sam2_hiera_b+.yaml"),
"large": ("./checkpoints/sam2_hiera_large.pt", "sam2_hiera_l.yaml")
}
sam2_checkpoint, model_cfg = checkpoint_map[checkpoint]
# Use CPU for both model and computations
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cpu")
predictor = SAM2ImagePredictor(sam2_model)
predictor.set_image(image)
input_point = np.array(tracking_points.value)
input_label = np.array(trackings_input_label.value)
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
sorted_ind = np.argsort(scores)[::-1]
masks = masks[sorted_ind]
scores = scores[sorted_ind]
results, mask_results = show_masks(image, masks, scores,
point_coords=input_point,
input_labels=input_label,
borders=True)
return results[0], mask_results[0]
with gr.Blocks() as demo:
first_frame_path = gr.State()
tracking_points = gr.State([])
trackings_input_label = gr.State([])
with gr.Column():
gr.Markdown("# SAM2 Image Predictor (CPU Version)")
gr.Markdown("This version runs entirely on CPU")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
points_map = gr.Image(label="points map", type="filepath", interactive=True)
with gr.Row():
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include")
clear_points_btn = gr.Button("Clear Points")
checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny")
submit_btn = gr.Button("Submit")
with gr.Column():
output_result = gr.Image()
output_result_mask = gr.Image()
clear_points_btn.click(
fn=preprocess_image,
inputs=input_image,
outputs=[first_frame_path, tracking_points, trackings_input_label, points_map],
queue=False
)
points_map.upload(
fn=preprocess_image,
inputs=[points_map],
outputs=[first_frame_path, tracking_points, trackings_input_label, input_image],
queue=False
)
points_map.select(
fn=get_point,
inputs=[point_type, tracking_points, trackings_input_label, first_frame_path],
outputs=[tracking_points, trackings_input_label, points_map],
queue=False
)
submit_btn.click(
fn=sam_process,
inputs=[input_image, checkpoint, tracking_points, trackings_input_label],
outputs=[output_result, output_result_mask]
)
demo.launch(show_api=False, show_error=True)