import gradio as gr #def greet(name): # return "Hello " + name + "!!" from transformers import pipeline get_completion = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") def summarize(input, max_length='5'): output = get_completion(input) return output[0]['summary_text'] gr.close_all() demo = gr.Interface(fn=summarize, inputs=[gr.Textbox(label="Text to summarize", lines=6)], outputs=[gr.Textbox(label="Summary result", lines=3)], title="Text summarization with distilbart-cnn", #title="Text summarization of large data", #description="Summarize any text using the `shleifer/distilbart-cnn-12-6` model under the hood!" description="GV user interface to summarize large text. Summarization produces a shorter version of the document (for example a research paper) while preserving the relevant and important information of the document." ) #demo.launch(share=True, server_port=int(os.environ['PORT2'])) demo.launch(share=True)