from huggingface_hub import InferenceClient import gradio as gr # Upgraded to Mistral-7B-v0.3 client = InferenceClient( "mistralai/Mistral-7B-Instruct-v0.3" ) def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=900, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=900, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as ai_chat: gr.HTML("

AI Conversation

") gr.HTML("

How can I help you? You can converse with me and say more💬

") gr.HTML("

To try, select a prompt from below and hit submit

") gr.HTML("

Have a wonderful day! 📚

") gr.ChatInterface( generate, additional_inputs=additional_inputs, examples=[["List fun activities in Boston."], ["How to spend a weekend in San Francisco?"], ["What is the secret to life?"], ["Write me a recipe for a quick vegetarian breakfast."],["What is the future for full stack engineers?"], ["Create a complete plan for daily healthy habbits."], ["What is optogenetic simulation?"], ["How to conduct a neuroscience experiment using holography?"], ["What is non-invasive brain stimulation?"], ["Tell me lifestyle of people living in Auckland, NZ"], ["Make a tour plan for Los Angeles metro area."]] ) ''' By enabling the queue you can control when users know their position in the queue, and set a limit on maximum number of events allowed. Parameters: status_update_rate: If "auto", Queue will send status estimations to all clients whenever a job is finished. Otherwise Queue will send status at regular intervals set by this parameter as the number of seconds. api_open: If True, the REST routes of the backend will be open, allowing requests made directly to those endpoints to skip the queue. max_size: The maximum number of events the queue will store at any given moment. If the queue is full, new events will not be added and a user will receive a message saying that the queue is full. If None, the queue size will be unlimited. concurrency_count: Deprecated. Set the concurrency_limit directly on event listeners e.g. btn.click(fn, ..., concurrency_limit=10) or gr.Interface(concurrency_limit=10). If necessary, the total number of workers can be configured via `max_threads` in launch(). default_concurrency_limit: The default value of `concurrency_limit` to use for event listeners that don't specify a value. Can be set by environment variable GRADIO_DEFAULT_CONCURRENCY_LIMIT. Defaults to 1 if not set otherwise. replace deprecated concurency_count to concurrency_limit ''' #ai_chat.queue(concurrency_limit=None, max_size=250).launch(debug=True) ai_chat.queue(max_size=250).launch(debug=True)