import os,time,logging,requests,json,uuid,concurrent.futures,threading,base64,io from io import BytesIO from itertools import chain from PIL import Image from datetime import datetime from apscheduler.schedulers.background import BackgroundScheduler from flask import Flask, request, jsonify, Response, stream_with_context from werkzeug.middleware.proxy_fix import ProxyFix from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry os.environ['TZ'] = 'Asia/Shanghai' time.tzset() logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') API_ENDPOINT = "https://api-st.siliconflow.cn/v1/user/info" TEST_MODEL_ENDPOINT = "https://api.openai.com/v1/chat/completions" MODELS_ENDPOINT = "https://api.openai.com/v1/models" EMBEDDINGS_ENDPOINT = "https://api-st.siliconflow.cn/v1/embeddings" IMAGE_ENDPOINT = "https://api-st.siliconflow.cn/v1/images/generations" def requests_session_with_retries( retries=3, backoff_factor=0.3, status_forcelist=(500, 502, 504) ): session = requests.Session() retry = Retry( total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist, ) adapter = HTTPAdapter( max_retries=retry, pool_connections=1000, pool_maxsize=10000, pool_block=False ) session.mount("http://", adapter) session.mount("https://", adapter) return session session = requests_session_with_retries() app = Flask(__name__) app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1) models = { "text": [], "free_text": [], "embedding": [], "free_embedding": [], "image": [], "free_image": [] } key_status = { "invalid": [], "free": [], "unverified": [], "valid": [] } executor = concurrent.futures.ThreadPoolExecutor(max_workers=10000) model_key_indices = {} request_timestamps = [] token_counts = [] request_timestamps_day = [] token_counts_day = [] data_lock = threading.Lock() def extract_user_content(messages): user_content = "" for message in messages: if message["role"] == "user": if isinstance(message["content"], str): user_content += message["content"] + " " elif isinstance(message["content"], list): for item in message["content"]: if isinstance(item, dict) and item.get("type") == "text": user_content += item.get("text", "") + " " return user_content.strip() def refresh_models(): global models # Find the first valid key first_valid_key = None for key_list in key_status.values(): if key_list: first_valid_key = key_list[0] break if first_valid_key: models["text"] = get_all_models(first_valid_key) else: logging.warning("No valid keys found to fetch models.") models["text"] = [] for model_type in ["text"]: logging.info(f"所有{model_type}模型列表:{models[model_type]}") def load_keys(): global key_status for status in key_status: key_status[status] = [] keys_str = os.environ.get("KEYS") logging.info(f"The value of KEYS environment variable is: {keys_str}") if not keys_str: logging.warning("环境变量 KEYS 未设置。") return keys = keys_str.split(",") keys = [key.strip() for key in keys] global valid_keys_global, free_keys_global, unverified_keys_global valid_keys_global = [] free_keys_global = [] unverified_keys_global = [] with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor: futures = [executor.submit(process_key, key, "gpt-3.5-turbo") for key in keys] for key, future in zip(keys, futures): status = future.result() key_status[status].append(key) if status == "valid": valid_keys_global.append(key) elif status == "free": free_keys_global.append(key) elif status == "unverified": unverified_keys_global.append(key) logging.info(f"Key {key} status: {status}") def process_key(key, test_model): return "valid" def get_all_models(api_key): headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } try: response = session.get( MODELS_ENDPOINT, headers=headers ) response.raise_for_status() data = response.json() if ( isinstance(data, dict) and 'data' in data and isinstance(data['data'], list) ): return [ model.get("id") for model in data["data"] if isinstance(model, dict) and "id" in model ] else: logging.error("获取模型列表失败:响应数据格式不正确") return [] except requests.exceptions.RequestException as e: logging.error( f"获取模型列表失败," f"API Key:{api_key},错误信息:{e}" ) return [] except (KeyError, TypeError) as e: logging.error( f"解析模型列表失败," f"API Key:{api_key},错误信息:{e}" ) return [] def determine_request_type(model_name, model_list, free_model_list): if model_name in free_model_list: return "free" elif model_name in model_list: return "paid" else: return "unknown" def select_key(request_type, model_name): if request_type == "free": available_keys = ( free_keys_global + unverified_keys_global + valid_keys_global ) elif request_type == "paid": available_keys = unverified_keys_global + valid_keys_global else: available_keys = ( free_keys_global + unverified_keys_global + valid_keys_global ) if not available_keys: return None current_index = model_key_indices.get(model_name, 0) for _ in range(len(available_keys)): key = available_keys[current_index % len(available_keys)] current_index += 1 if key_is_valid(key, request_type): model_key_indices[model_name] = current_index return key else: logging.warning( f"KEY {key} 无效或达到限制,尝试下一个 KEY" ) model_key_indices[model_name] = 0 return None def key_is_valid(key, request_type): return True def check_authorization(request): authorization_key = os.environ.get("AUTHORIZATION_KEY") if not authorization_key: logging.warning("环境变量 AUTHORIZATION_KEY 未设置,此时无需鉴权即可使用,建议进行设置后再使用。") return True auth_header = request.headers.get('Authorization') if not auth_header: logging.warning("请求头中缺少 Authorization 字段。") return False if auth_header != f"Bearer {authorization_key}": logging.warning(f"无效的 Authorization 密钥:{auth_header}") return False return True scheduler = BackgroundScheduler() scheduler.add_job(load_keys, 'interval', hours=1) scheduler.remove_all_jobs() scheduler.add_job(refresh_models, 'interval', hours=1) @app.route('/') def index(): current_time = time.time() one_minute_ago = current_time - 60 one_day_ago = current_time - 86400 with data_lock: while request_timestamps and request_timestamps[0] < one_minute_ago: request_timestamps.pop(0) token_counts.pop(0) rpm = len(request_timestamps) tpm = sum(token_counts) with data_lock: while request_timestamps_day and request_timestamps_day[0] < one_day_ago: request_timestamps_day.pop(0) token_counts_day.pop(0) rpd = len(request_timestamps_day) tpd = sum(token_counts_day) return jsonify({"rpm": rpm, "tpm": tpm, "rpd": rpd, "tpd": tpd}) @app.route('/handsome/v1/models', methods=['GET']) def list_models(): if not check_authorization(request): return jsonify({"error": "Unauthorized"}), 401 detailed_models = [] all_models = chain( models["text"], models["embedding"], models["image"] ) for model in all_models: detailed_models.append({ "id": model, "object": "model", "created": 1678888888, "owned_by": "openai", "permission": [], "root": model, "parent": None }) return jsonify({ "success": True, "data": detailed_models }) @app.route('/handsome/v1/chat/completions', methods=['POST']) def handsome_chat_completions(): if not check_authorization(request): return jsonify({"error": "Unauthorized"}), 401 data = request.get_json() logging.info(f"Request data: {data}") if not data or 'model' not in data: return jsonify({"error": "Invalid request data"}), 400 if data['model'] not in models["text"] and data['model'] not in models["image"]: return jsonify({"error": "Invalid model"}), 400 model_name = data['model'] request_type = determine_request_type( model_name, models["text"] + models["image"], models["free_text"] + models["free_image"] ) user_content = extract_user_content(data.get("messages", [])) phrases_to_check = ["hello", "你好", "什么模型", "签到", "社工", "你是谁", "冷笑话", "只回答", "Netflix", "response", "A="] phrases_to_check_lower = [phrase.lower() for phrase in phrases_to_check] # Lowercase the phrases canned_response_content = "这是公益api,模型全部可用且保真,请不要对模型进行无意义的测试,请尽量不要使用高级模型解决没必要的问题。\n换个话题吧,请不要对模型进行无意义的测试,请尽量不要使用高级模型解决没必要的问题。" user_content_lower = user_content.lower() if user_content_lower == "hi": logging.info("成功拦截一次!(仅hi)") if data.get("stream", False): def generate_canned_stream(): message_data = { "choices": [ { "delta": { "content": canned_response_content }, "index": 0, "finish_reason": "stop" } ] } yield f"data: {json.dumps(message_data)}\n\n".encode("utf-8") model_data = { "model_name": model_name } yield f"data: {json.dumps(message_data)}\n\n".encode("utf-8") yield f"data: {json.dumps(model_data)}\n\n".encode("utf-8") yield f"data: [DONE]\n\n".encode("utf-8") return Response( stream_with_context(generate_canned_stream()), content_type="text/event-stream" ) else: canned_response = { "choices": [ { "message": { "content": canned_response_content }, "index": 0, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0 }, "model_name": model_name } return jsonify(canned_response) elif any(phrase in user_content_lower for phrase in phrases_to_check_lower): # Use the lowercased phrases logging.info("成功拦截一次!") if data.get("stream", False): def generate_canned_stream(): message_data = { "choices": [ { "delta": { "content": canned_response_content }, "index": 0, "finish_reason": "stop" } ] } model_data = { "model_name": model_name } yield f"data: {json.dumps(message_data)}\n\n".encode("utf-8") yield f"data: {json.dumps(model_data)}\n\n".encode("utf-8") yield f"data: [DONE]\n\n".encode("utf-8") return Response( stream_with_context(generate_canned_stream()), content_type="text/event-stream" ) else: canned_response = { "choices": [ { "message": { "content": canned_response_content }, "index": 0, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0 }, "model_name": model_name } return jsonify(canned_response) api_key = select_key(request_type, model_name) if not api_key: return jsonify( { "error": ( "No available API key for this " "request type or all keys have " "reached their limits" ) } ), 429 headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } try: start_time = time.time() response = requests.post( TEST_MODEL_ENDPOINT, headers=headers, json=data, stream=data.get("stream", False) ) if response.status_code == 429: return jsonify(response.json()), 429 if data.get("stream", False): def generate(): first_chunk_time = None full_response_content = "" for chunk in response.iter_content(chunk_size=2048): if chunk: if first_chunk_time is None: first_chunk_time = time.time() full_response_content += chunk.decode("utf-8") yield chunk end_time = time.time() first_token_time = ( first_chunk_time - start_time if first_chunk_time else 0 ) total_time = end_time - start_time response_content = "" prompt_tokens = 0 completion_tokens = 0 for line in full_response_content.splitlines(): if line.startswith("data:"): line = line[5:].strip() if line == "[DONE]": continue try: response_json = json.loads(line) if "choices" in response_json: for choice in response_json["choices"]: if "delta" in choice and "content" in choice["delta"]: response_content += choice["delta"]["content"] elif "message" in choice and "content" in choice["message"]: response_content += choice["message"]["content"] if "finish_reason" in choice: finish_reason = choice["finish_reason"] except json.JSONDecodeError as e: logging.error(f"JSON 解析失败: {e}, 行内容: {line}") except KeyError as e: logging.error(f"键错误: {e}, 行内容: {line}") except IndexError as e: logging.error(f"索引错误: {e}, 行内容: {line}") print(f'{response_content=}') print(f'{prompt_tokens=}') print(f'{completion_tokens=}') user_content = extract_user_content(data.get("messages", [])) user_content_replaced = user_content.replace( '\n', '\\n' ).replace('\r', '\\n') response_content_replaced = response_content.replace( '\n', '\\n' ).replace('\r', '\\n') logging.info( f"使用的key: {api_key}, " f"提示token: {prompt_tokens}, " f"输出token: {completion_tokens}, " f"首字用时: {first_token_time:.4f}秒, " f"总共用时: {total_time:.4f}秒, " f"使用的模型: {model_name}, " f"用户的内容: {user_content_replaced}, " f"输出的内容: {response_content_replaced}" ) with data_lock: request_timestamps.append(time.time()) token_counts.append(prompt_tokens+completion_tokens) request_timestamps_day.append(time.time()) token_counts_day.append(prompt_tokens+completion_tokens) return Response( stream_with_context(generate()), content_type=response.headers['Content-Type'] ) else: response.raise_for_status() end_time = time.time() response_json = response.json() total_time = end_time - start_time try: prompt_tokens = response_json["usage"]["prompt_tokens"] completion_tokens = response_json[ "usage" ]["completion_tokens"] response_content = response_json[ "choices" ][0]["message"]["content"] response_content = response_content except (KeyError, ValueError, IndexError) as e: logging.error( f"解析非流式响应 JSON 失败: {e}, " f"完整内容: {response_json}" ) prompt_tokens = 0 completion_tokens = 0 response_content = "这是公益api,模型全部可用且保真,请不要对模型进行无意义的测试,请尽量不要使用高级模型解决没必要的问题。\n" user_content = extract_user_content(data.get("messages", [])) user_content_replaced = user_content.replace( '\n', '\\n' ).replace('\r', '\\n') response_content_replaced = response_content.replace( '\n', '\\n' ).replace('\r', '\\n') logging.info( f"使用的key: {api_key}, " f"提示token: {prompt_tokens}, " f"输出token: {completion_tokens}, " f"首字用时: 0, " f"总共用时: {total_time:.4f}秒, " f"使用的模型: {model_name}, " f"用户的内容: {user_content_replaced}, " f"输出的内容: {response_content_replaced}" ) with data_lock: request_timestamps.append(time.time()) if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]: token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"]) else: token_counts.append(0) request_timestamps_day.append(time.time()) if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]: token_counts_day.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"]) else: token_counts_day.append(0) response_json["choices"][0]["message"]["content"] = response_content return jsonify(response_json) except requests.exceptions.RequestException as e: logging.error(f"请求转发异常: {e}") return jsonify({"error": str(e)}), 500 if __name__ == '__main__': logging.info(f"环境变量:{os.environ}") load_keys() logging.info("程序启动时首次加载 keys 已执行") scheduler.start() logging.info("首次加载 keys 已手动触发执行") refresh_models() logging.info("首次刷新模型列表已手动触发执行") app.run(debug=False,host='0.0.0.0',port=int(os.environ.get('PORT', 7860)))