oai / app.py
yangtb24's picture
Update app.py
af14b51 verified
raw
history blame
20.6 kB
import os,time,logging,requests,json,uuid,concurrent.futures,threading,base64,io
from io import BytesIO
from itertools import chain
from PIL import Image
from datetime import datetime
from apscheduler.schedulers.background import BackgroundScheduler
from flask import Flask, request, jsonify, Response, stream_with_context
from werkzeug.middleware.proxy_fix import ProxyFix
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
os.environ['TZ'] = 'Asia/Shanghai'
time.tzset()
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
API_ENDPOINT = "https://api-st.siliconflow.cn/v1/user/info"
TEST_MODEL_ENDPOINT = "https://api-st.siliconflow.cn/v1/chat/completions"
MODELS_ENDPOINT = "https://api.openai.com/v1/models"
EMBEDDINGS_ENDPOINT = "https://api-st.siliconflow.cn/v1/embeddings"
IMAGE_ENDPOINT = "https://api-st.siliconflow.cn/v1/images/generations"
def requests_session_with_retries(
retries=3, backoff_factor=0.3, status_forcelist=(500, 502, 504)
):
session = requests.Session()
retry = Retry(
total=retries,
read=retries,
connect=retries,
backoff_factor=backoff_factor,
status_forcelist=status_forcelist,
)
adapter = HTTPAdapter(
max_retries=retry,
pool_connections=1000,
pool_maxsize=10000,
pool_block=False
)
session.mount("http://", adapter)
session.mount("https://", adapter)
return session
session = requests_session_with_retries()
app = Flask(__name__)
app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1)
models = {
"text": [],
"free_text": [],
"embedding": [],
"free_embedding": [],
"image": [],
"free_image": []
}
key_status = {
"invalid": [],
"free": [],
"unverified": [],
"valid": []
}
executor = concurrent.futures.ThreadPoolExecutor(max_workers=10000)
model_key_indices = {}
request_timestamps = []
token_counts = []
request_timestamps_day = []
token_counts_day = []
data_lock = threading.Lock()
def get_credit_summary(api_key):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
max_retries = 3
for attempt in range(max_retries):
try:
response = session.get(API_ENDPOINT, headers=headers, timeout=2)
response.raise_for_status()
data = response.json().get("data", {})
total_balance = data.get("totalBalance", 0)
logging.info(f"获取额度,API Key:{api_key},当前额度: {total_balance}")
return {"total_balance": float(total_balance)}
except requests.exceptions.Timeout as e:
logging.error(f"获取额度信息失败,API Key:{api_key},尝试次数:{attempt+1}/{max_retries},错误信息:{e} (Timeout)")
if attempt >= max_retries - 1:
logging.error(f"获取额度信息失败,API Key:{api_key},所有重试次数均已失败 (Timeout)")
except requests.exceptions.RequestException as e:
logging.error(f"获取额度信息失败,API Key:{api_key},错误信息:{e}")
return None
def extract_user_content(messages):
user_content = ""
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if isinstance(item, dict) and item.get("type") == "text":
user_content += item.get("text", "") + " "
return user_content.strip()
def get_siliconflow_data(model_name, data):
siliconflow_data = {
"model": model_name,
"prompt": data.get("prompt") or "",
}
if model_name == "black-forest-labs/FLUX.1-pro":
siliconflow_data.update({
"width": max(256, min(1440, (data.get("width", 1024) // 32) * 32)),
"height": max(256, min(1440, (data.get("height", 768) // 32) * 32)),
"prompt_upsampling": data.get("prompt_upsampling", False),
"image_prompt": data.get("image_prompt"),
"steps": max(1, min(50, data.get("steps", 20))),
"guidance": max(1.5, min(5, data.get("guidance", 3))),
"safety_tolerance": max(0, min(6, data.get("safety_tolerance", 2))),
"interval": max(1, min(4, data.get("interval", 2))),
"output_format": data.get("output_format", "png")
})
seed = data.get("seed")
if isinstance(seed, int) and 0 < seed < 9999999999:
siliconflow_data["seed"] = seed
else:
siliconflow_data.update({
"image_size": data.get("image_size", "1024x1024"),
"prompt_enhancement": data.get("prompt_enhancement", False)
})
seed = data.get("seed")
if isinstance(seed, int) and 0 < seed < 9999999999:
siliconflow_data["seed"] = seed
if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]:
siliconflow_data.update({
"batch_size": max(1, min(4, data.get("n", 1))),
"num_inference_steps": max(1, min(50, data.get("steps", 20))),
"guidance_scale": max(0, min(100, data.get("guidance_scale", 7.5))),
"negative_prompt": data.get("negative_prompt")
})
valid_sizes = ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]
if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in valid_sizes:
siliconflow_data["image_size"] = "1024x1024"
return siliconflow_data
def refresh_models():
global models
models["text"] = get_all_models(key_status["valid"][0])
for model_type in ["text"]:
logging.info(f"所有{model_type}模型列表:{models[model_type]}")
logging.info(f"免费{model_type}模型列表:{models[f'free_{model_type}']}")
def load_keys():
global key_status
for status in key_status:
key_status[status] = []
keys_str = os.environ.get("KEYS")
logging.info(f"The value of KEYS environment variable is: {keys_str}")
if not keys_str:
logging.warning("环境变量 KEYS 未设置。")
return
valid_keys_global = keys_str
def process_key(key, test_model):
credit_summary = get_credit_summary(key)
if credit_summary is None:
return "invalid"
else:
total_balance = credit_summary.get("total_balance", 0)
if total_balance <= 0.03:
return "free"
else:
if test_model_availability(key, test_model):
return "valid"
else:
return "unverified"
def get_all_models(api_key):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = session.get(
MODELS_ENDPOINT,
headers=headers
)
response.raise_for_status()
data = response.json()
if (
isinstance(data, dict) and
'data' in data and
isinstance(data['data'], list)
):
return [
model.get("id") for model in data["data"]
if isinstance(model, dict) and "id" in model
]
else:
logging.error("获取模型列表失败:响应数据格式不正确")
return []
except requests.exceptions.RequestException as e:
logging.error(
f"获取模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
except (KeyError, TypeError) as e:
logging.error(
f"解析模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
def determine_request_type(model_name, model_list, free_model_list):
if model_name in free_model_list:
return "free"
elif model_name in model_list:
return "paid"
else:
return "unknown"
def select_key(request_type, model_name):
if request_type == "free":
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
elif request_type == "paid":
available_keys = unverified_keys_global + valid_keys_global
else:
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
if not available_keys:
return None
current_index = model_key_indices.get(model_name, 0)
for _ in range(len(available_keys)):
key = available_keys[current_index % len(available_keys)]
current_index += 1
if key_is_valid(key, request_type):
model_key_indices[model_name] = current_index
return key
else:
logging.warning(
f"KEY {key} 无效或达到限制,尝试下一个 KEY"
)
model_key_indices[model_name] = 0
return None
def key_is_valid(key, request_type):
if request_type == "invalid":
return False
credit_summary = get_credit_summary(key)
if credit_summary is None:
return False
total_balance = credit_summary.get("total_balance", 0)
if request_type == "free":
return True
elif request_type == "paid" or request_type == "unverified":
return total_balance > 0
else:
return False
def check_authorization(request):
authorization_key = os.environ.get("AUTHORIZATION_KEY")
if not authorization_key:
logging.warning("环境变量 AUTHORIZATION_KEY 未设置,此时无需鉴权即可使用,建议进行设置后再使用。")
return True
auth_header = request.headers.get('Authorization')
if not auth_header:
logging.warning("请求头中缺少 Authorization 字段。")
return False
if auth_header != f"Bearer {authorization_key}":
logging.warning(f"无效的 Authorization 密钥:{auth_header}")
return False
return True
scheduler = BackgroundScheduler()
scheduler.add_job(load_keys, 'interval', hours=1)
scheduler.remove_all_jobs()
scheduler.add_job(refresh_models, 'interval', hours=1)
@app.route('/')
def index():
current_time = time.time()
one_minute_ago = current_time - 60
one_day_ago = current_time - 86400
with data_lock:
while request_timestamps and request_timestamps[0] < one_minute_ago:
request_timestamps.pop(0)
token_counts.pop(0)
rpm = len(request_timestamps)
tpm = sum(token_counts)
with data_lock:
while request_timestamps_day and request_timestamps_day[0] < one_day_ago:
request_timestamps_day.pop(0)
token_counts_day.pop(0)
rpd = len(request_timestamps_day)
tpd = sum(token_counts_day)
return jsonify({"rpm": rpm, "tpm": tpm, "rpd": rpd, "tpd": tpd})
@app.route('/handsome/v1/models', methods=['GET'])
def list_models():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
detailed_models = []
all_models = chain(
models["text"],
models["embedding"],
models["image"]
)
for model in all_models:
detailed_models.append({
"id": model,
"object": "model",
"created": 1678888888,
"owned_by": "openai",
"permission": [],
"root": model,
"parent": None
})
return jsonify({
"success": True,
"data": detailed_models
})
@app.route('/handsome/v1/chat/completions', methods=['POST'])
def handsome_chat_completions():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
if data['model'] not in models["text"] and data['model'] not in models["image"]:
return jsonify({"error": "Invalid model"}), 400
model_name = data['model']
request_type = determine_request_type(
model_name,
models["text"] + models["image"],
models["free_text"] + models["free_image"]
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify(
{
"error": (
"No available API key for this "
"request type or all keys have "
"reached their limits"
)
}
), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
start_time = time.time()
response = requests.post(
TEST_MODEL_ENDPOINT,
headers=headers,
json=data,
stream=data.get("stream", False)
)
if response.status_code == 429:
return jsonify(response.json()), 429
if data.get("stream", False):
def generate():
first_chunk_time = None
full_response_content = ""
for chunk in response.iter_content(chunk_size=2048):
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time()
full_response_content += chunk.decode("utf-8")
yield chunk
end_time = time.time()
first_token_time = (
first_chunk_time - start_time
if first_chunk_time else 0
)
total_time = end_time - start_time
prompt_tokens = 0
completion_tokens = 0
response_content = ""
for line in full_response_content.splitlines():
if line.startswith("data:"):
line = line[5:].strip()
if line == "[DONE]":
continue
try:
response_json = json.loads(line)
if (
"usage" in response_json and
"completion_tokens" in response_json["usage"]
):
completion_tokens = response_json[
"usage"
]["completion_tokens"]
if (
"choices" in response_json and
len(response_json["choices"]) > 0 and
"delta" in response_json["choices"][0] and
"content" in response_json[
"choices"
][0]["delta"]
):
response_content += response_json[
"choices"
][0]["delta"]["content"]
if (
"usage" in response_json and
"prompt_tokens" in response_json["usage"]
):
prompt_tokens = response_json[
"usage"
]["prompt_tokens"]
except (
KeyError,
ValueError,
IndexError
) as e:
logging.error(
f"解析流式响应单行 JSON 失败: {e}, "
f"行内容: {line}"
)
user_content = extract_user_content(data.get("messages", []))
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: {first_token_time:.4f}秒, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens+completion_tokens)
request_timestamps_day.append(time.time())
token_counts_day.append(prompt_tokens+completion_tokens)
return Response(
stream_with_context(generate()),
content_type=response.headers['Content-Type']
)
else:
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
prompt_tokens = response_json["usage"]["prompt_tokens"]
completion_tokens = response_json[
"usage"
]["completion_tokens"]
response_content = response_json[
"choices"
][0]["message"]["content"]
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析非流式响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
prompt_tokens = 0
completion_tokens = 0
response_content = ""
user_content = extract_user_content(data.get("messages", []))
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: 0, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
else:
token_counts.append(0)
request_timestamps_day.append(time.time())
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
token_counts_day.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
else:
token_counts_day.append(0)
return jsonify(response_json)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
logging.info(f"环境变量:{os.environ}")
load_keys()
logging.info("程序启动时首次加载 keys 已执行")
scheduler.start()
logging.info("首次加载 keys 已手动触发执行")
refresh_models()
logging.info("首次刷新模型列表已手动触发执行")
app.run(debug=False,host='0.0.0.0',port=int(os.environ.get('PORT', 7860)))