File size: 21,722 Bytes
313605b 4c8620a 4296023 6740b78 9901878 bae67bf ba8e699 2fff224 313605b 4d3fe36 af17ca0 6be1fe2 ddaefda 4078885 4d3fe36 5813597 b240723 6139e1f 5813597 7314969 bae67bf 7fcc6aa cbc7abf 7fcc6aa 16b7f0b 1580847 16b7f0b 2d342e6 1211b2c 7332a9f 91ee28f 8e3da9c 76c71cc 8e3da9c 1d68708 6b0a5df 2d342e6 613a60b d155e37 6139e1f 2d342e6 91ee28f 2d342e6 af14b51 2d342e6 bae67bf 2d342e6 613a60b 8d91d51 91ee28f 003a0ec 91ee28f 6139e1f ba8e699 7fcc6aa 22197b0 6139e1f 22197b0 ba8e699 22197b0 ba8e699 22197b0 ba8e699 22197b0 ba8e699 2f8cff3 ba8e699 2f8cff3 ba8e699 91ee28f ba8e699 22197b0 ba8e699 22197b0 ba8e699 91ee28f c31239d 91ee28f 22197b0 91ee28f 1233d32 ba8e699 09735d0 64c7900 09735d0 bae67bf 84eaeb7 22197b0 bae67bf 16b7f0b 8e3da9c 6582081 8e3da9c 6582081 76c71cc 6582081 76c71cc e6b81d7 6582081 6740b78 76f9b1e 6740b78 2d342e6 6740b78 4296023 6740b78 5f4ff80 6740b78 2d342e6 060d67a 6740b78 5f4ff80 6740b78 2d342e6 6740b78 470a33a 5f4ff80 dc11322 36a66d2 10ec2ee 5261088 eda6ea8 5261088 be10079 36a66d2 be10079 5261088 37ad876 9e2597c 5261088 36a66d2 5261088 be10079 5261088 be10079 5261088 10ec2ee eda6ea8 10ec2ee eda6ea8 10ec2ee 37ad876 9e2597c 5f4ff80 10ec2ee 5f4ff80 6740b78 470a33a af14b51 f101853 af14b51 f101853 af14b51 9687194 af14b51 4497eab 6740b78 af14b51 6740b78 3a2edd7 66b181e af14b51 66b181e af14b51 66b181e 9687194 1d68708 df482ac 485c6ba 470a33a df482ac af14b51 df482ac 6740b78 af14b51 6740b78 3a2edd7 af14b51 76c71cc af14b51 485c6ba af14b51 11c701f af14b51 92ddeea 485c6ba af14b51 92ddeea af14b51 99a5694 eda6ea8 bae67bf 4078885 db69584 22197b0 4078885 22197b0 16b7f0b 4078885 db69584 ba8e699 4078885 ba8e699 9e2597c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
import os,time,logging,requests,json,uuid,concurrent.futures,threading,base64,io
from io import BytesIO
from itertools import chain
from PIL import Image
from datetime import datetime
from apscheduler.schedulers.background import BackgroundScheduler
from flask import Flask, request, jsonify, Response, stream_with_context
from werkzeug.middleware.proxy_fix import ProxyFix
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
os.environ['TZ'] = 'Asia/Shanghai'
time.tzset()
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
API_ENDPOINT = "https://api-st.siliconflow.cn/v1/user/info"
TEST_MODEL_ENDPOINT = "https://api.openai.com/v1/chat/completions"
MODELS_ENDPOINT = "https://api.openai.com/v1/models"
EMBEDDINGS_ENDPOINT = "https://api-st.siliconflow.cn/v1/embeddings"
IMAGE_ENDPOINT = "https://api-st.siliconflow.cn/v1/images/generations"
def requests_session_with_retries(
retries=3, backoff_factor=0.3, status_forcelist=(500, 502, 504)
):
session = requests.Session()
retry = Retry(
total=retries,
read=retries,
connect=retries,
backoff_factor=backoff_factor,
status_forcelist=status_forcelist,
)
adapter = HTTPAdapter(
max_retries=retry,
pool_connections=1000,
pool_maxsize=10000,
pool_block=False
)
session.mount("http://", adapter)
session.mount("https://", adapter)
return session
session = requests_session_with_retries()
app = Flask(__name__)
app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1)
models = {
"text": [],
"free_text": [],
"embedding": [],
"free_embedding": [],
"image": [],
"free_image": []
}
key_status = {
"invalid": [],
"free": [],
"unverified": [],
"valid": []
}
executor = concurrent.futures.ThreadPoolExecutor(max_workers=10000)
model_key_indices = {}
request_timestamps = []
token_counts = []
request_timestamps_day = []
token_counts_day = []
data_lock = threading.Lock()
def extract_user_content(messages):
user_content = ""
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if isinstance(item, dict) and item.get("type") == "text":
user_content += item.get("text", "") + " "
return user_content.strip()
def refresh_models():
global models
# Find the first valid key
first_valid_key = None
for key_list in key_status.values():
if key_list:
first_valid_key = key_list[0]
break
if first_valid_key:
models["text"] = get_all_models(first_valid_key)
else:
logging.warning("No valid keys found to fetch models.")
models["text"] = []
for model_type in ["text"]:
logging.info(f"所有{model_type}模型列表:{models[model_type]}")
def load_keys():
global key_status
for status in key_status:
key_status[status] = []
keys_str = os.environ.get("KEYS")
logging.info(f"The value of KEYS environment variable is: {keys_str}")
if not keys_str:
logging.warning("环境变量 KEYS 未设置。")
return
keys = keys_str.split(",")
keys = [key.strip() for key in keys]
global valid_keys_global, free_keys_global, unverified_keys_global
valid_keys_global = []
free_keys_global = []
unverified_keys_global = []
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = [executor.submit(process_key, key, "gpt-3.5-turbo") for key in keys]
for key, future in zip(keys, futures):
status = future.result()
key_status[status].append(key)
if status == "valid":
valid_keys_global.append(key)
elif status == "free":
free_keys_global.append(key)
elif status == "unverified":
unverified_keys_global.append(key)
logging.info(f"Key {key} status: {status}")
def process_key(key, test_model):
return "valid"
def get_all_models(api_key):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = session.get(
MODELS_ENDPOINT,
headers=headers
)
response.raise_for_status()
data = response.json()
if (
isinstance(data, dict) and
'data' in data and
isinstance(data['data'], list)
):
return [
model.get("id") for model in data["data"]
if isinstance(model, dict) and "id" in model
]
else:
logging.error("获取模型列表失败:响应数据格式不正确")
return []
except requests.exceptions.RequestException as e:
logging.error(
f"获取模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
except (KeyError, TypeError) as e:
logging.error(
f"解析模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
def determine_request_type(model_name, model_list, free_model_list):
if model_name in free_model_list:
return "free"
elif model_name in model_list:
return "paid"
else:
return "unknown"
def select_key(request_type, model_name):
if request_type == "free":
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
elif request_type == "paid":
available_keys = unverified_keys_global + valid_keys_global
else:
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
if not available_keys:
return None
current_index = model_key_indices.get(model_name, 0)
for _ in range(len(available_keys)):
key = available_keys[current_index % len(available_keys)]
current_index += 1
if key_is_valid(key, request_type):
model_key_indices[model_name] = current_index
return key
else:
logging.warning(
f"KEY {key} 无效或达到限制,尝试下一个 KEY"
)
model_key_indices[model_name] = 0
return None
def key_is_valid(key, request_type):
return True
def check_authorization(request):
authorization_key = os.environ.get("AUTHORIZATION_KEY")
if not authorization_key:
logging.warning("环境变量 AUTHORIZATION_KEY 未设置,此时无需鉴权即可使用,建议进行设置后再使用。")
return True
auth_header = request.headers.get('Authorization')
if not auth_header:
logging.warning("请求头中缺少 Authorization 字段。")
return False
if auth_header != f"Bearer {authorization_key}":
logging.warning(f"无效的 Authorization 密钥:{auth_header}")
return False
return True
scheduler = BackgroundScheduler()
scheduler.add_job(load_keys, 'interval', hours=1)
scheduler.remove_all_jobs()
scheduler.add_job(refresh_models, 'interval', hours=1)
@app.route('/')
def index():
current_time = time.time()
one_minute_ago = current_time - 60
one_day_ago = current_time - 86400
with data_lock:
while request_timestamps and request_timestamps[0] < one_minute_ago:
request_timestamps.pop(0)
token_counts.pop(0)
rpm = len(request_timestamps)
tpm = sum(token_counts)
with data_lock:
while request_timestamps_day and request_timestamps_day[0] < one_day_ago:
request_timestamps_day.pop(0)
token_counts_day.pop(0)
rpd = len(request_timestamps_day)
tpd = sum(token_counts_day)
return jsonify({"rpm": rpm, "tpm": tpm, "rpd": rpd, "tpd": tpd})
@app.route('/handsome/v1/models', methods=['GET'])
def list_models():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
detailed_models = []
all_models = chain(
models["text"],
models["embedding"],
models["image"]
)
for model in all_models:
detailed_models.append({
"id": model,
"object": "model",
"created": 1678888888,
"owned_by": "openai",
"permission": [],
"root": model,
"parent": None
})
return jsonify({
"success": True,
"data": detailed_models
})
@app.route('/handsome/v1/chat/completions', methods=['POST'])
def handsome_chat_completions():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
logging.info(f"Request data: {data}")
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
if data['model'] not in models["text"] and data['model'] not in models["image"]:
return jsonify({"error": "Invalid model"}), 400
model_name = data['model']
request_type = determine_request_type(
model_name,
models["text"] + models["image"],
models["free_text"] + models["free_image"]
)
user_content = extract_user_content(data.get("messages", []))
phrases_to_check = ["hello", "你好", "什么模型", "签到", "社工", "你是谁", "冷笑话", "只回答", "Netflix", "response", "A="]
phrases_to_check_lower = [phrase.lower() for phrase in phrases_to_check] # Lowercase the phrases
canned_response_content = "这是公益api,模型全部可用且保真,请不要对模型进行无意义的测试,请尽量不要使用高级模型解决没必要的问题。\n换个话题吧,请不要对模型进行无意义的测试,请尽量不要使用高级模型解决没必要的问题。"
user_content_lower = user_content.lower()
if user_content_lower == "hi":
logging.info("成功拦截一次!(仅hi)")
if data.get("stream", False):
def generate_canned_stream():
message_data = {
"choices": [
{
"delta": {
"content": canned_response_content
},
"index": 0,
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(message_data)}\n\n".encode("utf-8")
model_data = {
"model_name": model_name
}
yield f"data: {json.dumps(message_data)}\n\n".encode("utf-8")
yield f"data: {json.dumps(model_data)}\n\n".encode("utf-8")
yield f"data: [DONE]\n\n".encode("utf-8")
return Response(
stream_with_context(generate_canned_stream()),
content_type="text/event-stream"
)
else:
canned_response = {
"choices": [
{
"message": {
"content": canned_response_content
},
"index": 0,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
},
"model_name": model_name
}
return jsonify(canned_response)
elif any(phrase in user_content_lower for phrase in phrases_to_check_lower): # Use the lowercased phrases
logging.info("成功拦截一次!")
if data.get("stream", False):
def generate_canned_stream():
message_data = {
"choices": [
{
"delta": {
"content": canned_response_content
},
"index": 0,
"finish_reason": "stop"
}
]
}
model_data = {
"model_name": model_name
}
yield f"data: {json.dumps(message_data)}\n\n".encode("utf-8")
yield f"data: {json.dumps(model_data)}\n\n".encode("utf-8")
yield f"data: [DONE]\n\n".encode("utf-8")
return Response(
stream_with_context(generate_canned_stream()),
content_type="text/event-stream"
)
else:
canned_response = {
"choices": [
{
"message": {
"content": canned_response_content
},
"index": 0,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
},
"model_name": model_name
}
return jsonify(canned_response)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify(
{
"error": (
"No available API key for this "
"request type or all keys have "
"reached their limits"
)
}
), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
start_time = time.time()
response = requests.post(
TEST_MODEL_ENDPOINT,
headers=headers,
json=data,
stream=data.get("stream", False)
)
if response.status_code == 429:
return jsonify(response.json()), 429
if data.get("stream", False):
def generate():
first_chunk_time = None
full_response_content = ""
for chunk in response.iter_content(chunk_size=2048):
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time()
full_response_content += chunk.decode("utf-8")
yield chunk
end_time = time.time()
first_token_time = (
first_chunk_time - start_time
if first_chunk_time else 0
)
total_time = end_time - start_time
response_content = ""
prompt_tokens = 0
completion_tokens = 0
for line in full_response_content.splitlines():
if line.startswith("data:"):
line = line[5:].strip()
if line == "[DONE]":
continue
try:
response_json = json.loads(line)
if "choices" in response_json:
for choice in response_json["choices"]:
if "delta" in choice and "content" in choice["delta"]:
response_content += choice["delta"]["content"]
elif "message" in choice and "content" in choice["message"]:
response_content += choice["message"]["content"]
if "finish_reason" in choice:
finish_reason = choice["finish_reason"]
except json.JSONDecodeError as e:
logging.error(f"JSON 解析失败: {e}, 行内容: {line}")
except KeyError as e:
logging.error(f"键错误: {e}, 行内容: {line}")
except IndexError as e:
logging.error(f"索引错误: {e}, 行内容: {line}")
print(f'{response_content=}')
print(f'{prompt_tokens=}')
print(f'{completion_tokens=}')
user_content = extract_user_content(data.get("messages", []))
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: {first_token_time:.4f}秒, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens+completion_tokens)
request_timestamps_day.append(time.time())
token_counts_day.append(prompt_tokens+completion_tokens)
return Response(
stream_with_context(generate()),
content_type=response.headers['Content-Type']
)
else:
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
prompt_tokens = response_json["usage"]["prompt_tokens"]
completion_tokens = response_json[
"usage"
]["completion_tokens"]
response_content = response_json[
"choices"
][0]["message"]["content"]
response_content = response_content
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析非流式响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
prompt_tokens = 0
completion_tokens = 0
response_content = "这是公益api,模型全部可用且保真,请不要对模型进行无意义的测试,请尽量不要使用高级模型解决没必要的问题。\n"
user_content = extract_user_content(data.get("messages", []))
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: 0, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
else:
token_counts.append(0)
request_timestamps_day.append(time.time())
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
token_counts_day.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
else:
token_counts_day.append(0)
response_json["choices"][0]["message"]["content"] = response_content
return jsonify(response_json)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
logging.info(f"环境变量:{os.environ}")
load_keys()
logging.info("程序启动时首次加载 keys 已执行")
scheduler.start()
logging.info("首次加载 keys 已手动触发执行")
refresh_models()
logging.info("首次刷新模型列表已手动触发执行")
app.run(debug=False,host='0.0.0.0',port=int(os.environ.get('PORT', 7860))) |