File size: 21,722 Bytes
313605b
4c8620a
4296023
6740b78
9901878
bae67bf
ba8e699
2fff224
313605b
 
4d3fe36
af17ca0
 
6be1fe2
ddaefda
4078885
4d3fe36
5813597
b240723
6139e1f
5813597
7314969
bae67bf
7fcc6aa
 
 
 
 
 
 
 
 
 
 
cbc7abf
 
 
 
 
 
7fcc6aa
 
 
 
 
 
16b7f0b
1580847
16b7f0b
2d342e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211b2c
7332a9f
91ee28f
 
8e3da9c
 
76c71cc
 
8e3da9c
 
1d68708
 
 
 
 
 
 
 
 
 
 
 
6b0a5df
2d342e6
 
613a60b
 
 
 
 
 
 
 
 
 
 
 
 
d155e37
6139e1f
2d342e6
91ee28f
2d342e6
 
 
 
 
 
af14b51
 
 
2d342e6
bae67bf
2d342e6
 
613a60b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d91d51
91ee28f
003a0ec
91ee28f
6139e1f
ba8e699
 
 
 
 
7fcc6aa
22197b0
6139e1f
22197b0
ba8e699
 
22197b0
 
 
 
 
 
 
 
 
ba8e699
 
 
 
22197b0
 
 
 
ba8e699
 
22197b0
 
 
 
ba8e699
 
2f8cff3
 
 
 
 
ba8e699
2f8cff3
ba8e699
91ee28f
ba8e699
22197b0
 
 
 
 
ba8e699
 
 
22197b0
 
 
 
 
ba8e699
 
 
 
91ee28f
 
 
 
 
c31239d
91ee28f
 
 
 
22197b0
 
 
91ee28f
 
 
 
 
1233d32
ba8e699
09735d0
 
 
64c7900
 
09735d0
 
 
 
 
 
 
 
 
 
 
 
bae67bf
84eaeb7
22197b0
 
bae67bf
16b7f0b
 
8e3da9c
 
6582081
8e3da9c
 
 
 
 
 
 
 
 
6582081
76c71cc
 
 
6582081
76c71cc
e6b81d7
6582081
 
6740b78
 
 
 
 
76f9b1e
6740b78
 
2d342e6
 
 
 
 
 
 
6740b78
 
 
 
 
4296023
6740b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f4ff80
6740b78
 
2d342e6
060d67a
6740b78
 
5f4ff80
6740b78
 
2d342e6
 
6740b78
470a33a
5f4ff80
 
dc11322
36a66d2
10ec2ee
5261088
 
 
 
 
eda6ea8
5261088
 
 
 
 
 
 
 
 
 
 
 
 
be10079
 
 
 
 
36a66d2
be10079
5261088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ad876
9e2597c
5261088
 
36a66d2
5261088
 
 
 
 
 
 
 
 
 
 
 
 
 
be10079
 
 
 
 
5261088
be10079
5261088
 
 
 
 
10ec2ee
 
eda6ea8
 
10ec2ee
eda6ea8
 
 
 
 
10ec2ee
 
 
 
 
37ad876
9e2597c
5f4ff80
10ec2ee
5f4ff80
6740b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470a33a
af14b51
 
 
 
 
 
 
 
f101853
af14b51
 
f101853
af14b51
 
 
 
9687194
af14b51
 
 
 
 
 
4497eab
6740b78
af14b51
 
 
 
6740b78
3a2edd7
66b181e
af14b51
 
66b181e
af14b51
 
 
 
 
 
 
66b181e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9687194
1d68708
df482ac
 
 
 
 
 
 
485c6ba
470a33a
 
df482ac
 
af14b51
df482ac
 
 
 
6740b78
af14b51
6740b78
3a2edd7
af14b51
76c71cc
af14b51
 
 
 
 
 
 
 
 
 
 
485c6ba
af14b51
 
 
 
 
 
 
 
11c701f
af14b51
 
 
 
 
 
 
92ddeea
485c6ba
af14b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ddeea
 
af14b51
 
 
 
 
99a5694
eda6ea8
bae67bf
4078885
db69584
22197b0
4078885
22197b0
16b7f0b
 
4078885
db69584
ba8e699
4078885
ba8e699
9e2597c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import os,time,logging,requests,json,uuid,concurrent.futures,threading,base64,io
from io import BytesIO
from itertools import chain
from PIL import Image
from datetime import datetime
from apscheduler.schedulers.background import BackgroundScheduler
from flask import Flask, request, jsonify, Response, stream_with_context
from werkzeug.middleware.proxy_fix import ProxyFix
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry

os.environ['TZ'] = 'Asia/Shanghai'
time.tzset()

logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s')

API_ENDPOINT = "https://api-st.siliconflow.cn/v1/user/info"
TEST_MODEL_ENDPOINT = "https://api.openai.com/v1/chat/completions"
MODELS_ENDPOINT = "https://api.openai.com/v1/models"
EMBEDDINGS_ENDPOINT = "https://api-st.siliconflow.cn/v1/embeddings"
IMAGE_ENDPOINT = "https://api-st.siliconflow.cn/v1/images/generations"

def requests_session_with_retries(
    retries=3, backoff_factor=0.3, status_forcelist=(500, 502, 504)
):
    session = requests.Session()
    retry = Retry(
        total=retries,
        read=retries,
        connect=retries,
        backoff_factor=backoff_factor,
        status_forcelist=status_forcelist,
    )
    adapter = HTTPAdapter(
        max_retries=retry,
        pool_connections=1000,
        pool_maxsize=10000,
        pool_block=False
    )
    session.mount("http://", adapter)
    session.mount("https://", adapter)
    return session

session = requests_session_with_retries()

app = Flask(__name__)
app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1)

models = {
    "text": [],
    "free_text": [],
    "embedding": [],
    "free_embedding": [],
    "image": [],
    "free_image": []
}

key_status = {
    "invalid": [],
    "free": [],
    "unverified": [],
    "valid": []
}

executor = concurrent.futures.ThreadPoolExecutor(max_workers=10000)
model_key_indices = {}

request_timestamps = []
token_counts = []
request_timestamps_day = []
token_counts_day = []
data_lock = threading.Lock()

def extract_user_content(messages):
    user_content = ""
    for message in messages:
        if message["role"] == "user":
            if isinstance(message["content"], str):
                user_content += message["content"] + " "
            elif isinstance(message["content"], list):
                for item in message["content"]:
                    if isinstance(item, dict) and item.get("type") == "text":
                        user_content += item.get("text", "") + " "
    return user_content.strip()

def refresh_models():
    global models
    
    # Find the first valid key
    first_valid_key = None
    for key_list in key_status.values():
        if key_list:
            first_valid_key = key_list[0]
            break

    if first_valid_key:
       models["text"] = get_all_models(first_valid_key)
    else:
        logging.warning("No valid keys found to fetch models.")
        models["text"] = []


    for model_type in ["text"]:
        logging.info(f"所有{model_type}模型列表:{models[model_type]}")

def load_keys():
    global key_status
    for status in key_status:
        key_status[status] = []
        
    keys_str = os.environ.get("KEYS")

    logging.info(f"The value of KEYS environment variable is: {keys_str}")
    
    if not keys_str:
        logging.warning("环境变量 KEYS 未设置。")
        return
    
    keys = keys_str.split(",")
    keys = [key.strip() for key in keys]
    
    global valid_keys_global, free_keys_global, unverified_keys_global
    valid_keys_global = []
    free_keys_global = []
    unverified_keys_global = []


    with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
        futures = [executor.submit(process_key, key, "gpt-3.5-turbo") for key in keys]
        for key, future in zip(keys, futures):
            status = future.result()
            key_status[status].append(key)
            if status == "valid":
                valid_keys_global.append(key)
            elif status == "free":
                free_keys_global.append(key)
            elif status == "unverified":
                unverified_keys_global.append(key)
            logging.info(f"Key {key} status: {status}")

def process_key(key, test_model):
    return "valid"

def get_all_models(api_key):
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json"
    }
    try:
        response = session.get(
            MODELS_ENDPOINT,
            headers=headers
        )
        response.raise_for_status()
        data = response.json()
        if (
            isinstance(data, dict) and
            'data' in data and
            isinstance(data['data'], list)
        ):
            return [
                model.get("id") for model in data["data"]
                if isinstance(model, dict) and "id" in model
            ]
        else:
            logging.error("获取模型列表失败:响应数据格式不正确")
            return []
    except requests.exceptions.RequestException as e:
        logging.error(
            f"获取模型列表失败,"
            f"API Key:{api_key},错误信息:{e}"
        )
        return []
    except (KeyError, TypeError) as e:
        logging.error(
            f"解析模型列表失败,"
            f"API Key:{api_key},错误信息:{e}"
        )
        return []

def determine_request_type(model_name, model_list, free_model_list):
    if model_name in free_model_list:
        return "free"
    elif model_name in model_list:
        return "paid"
    else:
        return "unknown"

def select_key(request_type, model_name):
    if request_type == "free":
        available_keys = (
            free_keys_global +
            unverified_keys_global +
            valid_keys_global
        )
    elif request_type == "paid":
        available_keys = unverified_keys_global + valid_keys_global
    else:
        available_keys = (
            free_keys_global +
            unverified_keys_global +
            valid_keys_global
        )

    if not available_keys:
        return None

    current_index = model_key_indices.get(model_name, 0)

    for _ in range(len(available_keys)):
        key = available_keys[current_index % len(available_keys)]
        current_index += 1

        if key_is_valid(key, request_type):
            model_key_indices[model_name] = current_index
            return key
        else:
            logging.warning(
                f"KEY {key} 无效或达到限制,尝试下一个 KEY"
            )

    model_key_indices[model_name] = 0
    return None

def key_is_valid(key, request_type):
    return True

def check_authorization(request):
    authorization_key = os.environ.get("AUTHORIZATION_KEY")
    if not authorization_key:
        logging.warning("环境变量 AUTHORIZATION_KEY 未设置,此时无需鉴权即可使用,建议进行设置后再使用。")
        return True

    auth_header = request.headers.get('Authorization')
    if not auth_header:
        logging.warning("请求头中缺少 Authorization 字段。")
        return False

    if auth_header != f"Bearer {authorization_key}":
        logging.warning(f"无效的 Authorization 密钥:{auth_header}")
        return False

    return True

scheduler = BackgroundScheduler()
scheduler.add_job(load_keys, 'interval', hours=1)
scheduler.remove_all_jobs()
scheduler.add_job(refresh_models, 'interval', hours=1)

@app.route('/')
def index():
    current_time = time.time()
    one_minute_ago = current_time - 60
    one_day_ago = current_time - 86400

    with data_lock:
        while request_timestamps and request_timestamps[0] < one_minute_ago:
            request_timestamps.pop(0)
            token_counts.pop(0)

        rpm = len(request_timestamps)
        tpm = sum(token_counts)

    with data_lock:
        while request_timestamps_day and request_timestamps_day[0] < one_day_ago:
            request_timestamps_day.pop(0)
            token_counts_day.pop(0)

        rpd = len(request_timestamps_day)
        tpd = sum(token_counts_day)

    return jsonify({"rpm": rpm, "tpm": tpm, "rpd": rpd, "tpd": tpd})
            
@app.route('/handsome/v1/models', methods=['GET'])
def list_models():
    if not check_authorization(request):
        return jsonify({"error": "Unauthorized"}), 401

    detailed_models = []
    
    all_models = chain(
        models["text"], 
        models["embedding"], 
        models["image"]
    )
    
    for model in all_models:
        detailed_models.append({
            "id": model,
            "object": "model",
            "created": 1678888888,
            "owned_by": "openai",
            "permission": [],
            "root": model,
            "parent": None
        })

    return jsonify({
        "success": True,
        "data": detailed_models
    })

@app.route('/handsome/v1/chat/completions', methods=['POST'])
def handsome_chat_completions():
    if not check_authorization(request):
        return jsonify({"error": "Unauthorized"}), 401

    data = request.get_json()
    logging.info(f"Request data: {data}")
    if not data or 'model' not in data:
        return jsonify({"error": "Invalid request data"}), 400
    if data['model'] not in models["text"] and data['model'] not in models["image"]:
        return jsonify({"error": "Invalid model"}), 400

    model_name = data['model']

    request_type = determine_request_type(
        model_name,
        models["text"] + models["image"],
        models["free_text"] + models["free_image"]
    )
    
    user_content = extract_user_content(data.get("messages", []))
    
    phrases_to_check = ["hello", "你好", "什么模型", "签到", "社工", "你是谁", "冷笑话", "只回答", "Netflix", "response", "A="]
    phrases_to_check_lower = [phrase.lower() for phrase in phrases_to_check]  # Lowercase the phrases
    canned_response_content = "这是公益api,模型全部可用且保真,请不要对模型进行无意义的测试,请尽量不要使用高级模型解决没必要的问题。\n换个话题吧,请不要对模型进行无意义的测试,请尽量不要使用高级模型解决没必要的问题。"
    
    user_content_lower = user_content.lower()
    
    if user_content_lower == "hi":
        logging.info("成功拦截一次!(仅hi)")
        if data.get("stream", False):
                def generate_canned_stream():
                    message_data = {
                        "choices": [
                            {
                                "delta": {
                                    "content": canned_response_content
                                },
                                "index": 0,
                                "finish_reason": "stop"
                            }
                        ]
                    }
                    yield f"data: {json.dumps(message_data)}\n\n".encode("utf-8")

                    model_data = {
                        "model_name": model_name
                    }

                    yield f"data: {json.dumps(message_data)}\n\n".encode("utf-8")
                    yield f"data: {json.dumps(model_data)}\n\n".encode("utf-8")
                    yield f"data: [DONE]\n\n".encode("utf-8")
                return Response(
                    stream_with_context(generate_canned_stream()),
                    content_type="text/event-stream"
                )
        else:
            canned_response = {
                "choices": [
                    {
                        "message": {
                            "content": canned_response_content
                        },
                        "index": 0,
                        "finish_reason": "stop"
                    }
                ],
                "usage": {
                    "prompt_tokens": 0,
                    "completion_tokens": 0,
                    "total_tokens": 0
                },
                "model_name": model_name
            }
            return jsonify(canned_response)
    elif any(phrase in user_content_lower for phrase in phrases_to_check_lower): # Use the lowercased phrases
        logging.info("成功拦截一次!")
        if data.get("stream", False):
                def generate_canned_stream():
                    message_data = {
                        "choices": [
                            {
                                "delta": {
                                    "content": canned_response_content
                                },
                                "index": 0,
                                "finish_reason": "stop"
                            }
                        ]
                    }

                    model_data = {
                        "model_name": model_name
                    }

                    yield f"data: {json.dumps(message_data)}\n\n".encode("utf-8")
                    yield f"data: {json.dumps(model_data)}\n\n".encode("utf-8")
                    yield f"data: [DONE]\n\n".encode("utf-8")
                return Response(
                    stream_with_context(generate_canned_stream()),
                    content_type="text/event-stream"
                )
        else:
            canned_response = {
                "choices": [
                    {
                        "message": {
                            "content": canned_response_content
                        },
                        "index": 0,
                        "finish_reason": "stop"
                    }
                ],
                "usage": {
                    "prompt_tokens": 0,
                    "completion_tokens": 0,
                    "total_tokens": 0
                },
                "model_name": model_name
            }
            return jsonify(canned_response)

    api_key = select_key(request_type, model_name)

    if not api_key:
        return jsonify(
            {
                "error": (
                    "No available API key for this "
                    "request type or all keys have "
                    "reached their limits"
                )
            }
        ), 429

    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json"
    }
    
    try:
        start_time = time.time()
        response = requests.post(
            TEST_MODEL_ENDPOINT,
            headers=headers,
            json=data,
            stream=data.get("stream", False)
        )

        if response.status_code == 429:
            return jsonify(response.json()), 429

        if data.get("stream", False):
            def generate():
                first_chunk_time = None
                full_response_content = ""
                
                for chunk in response.iter_content(chunk_size=2048):
                    if chunk:
                        if first_chunk_time is None:
                            first_chunk_time = time.time()
                        full_response_content += chunk.decode("utf-8")
                        yield chunk

                end_time = time.time()
                first_token_time = (
                    first_chunk_time - start_time
                    if first_chunk_time else 0
                )
                total_time = end_time - start_time

                response_content = ""
                prompt_tokens = 0
                completion_tokens = 0
                
                for line in full_response_content.splitlines():
                    if line.startswith("data:"):
                        line = line[5:].strip()
                        if line == "[DONE]":
                            continue
                        try:
                            response_json = json.loads(line)
                
                            if "choices" in response_json:
                                for choice in response_json["choices"]:
                                    if "delta" in choice and "content" in choice["delta"]:
                                        response_content += choice["delta"]["content"]
                                    elif "message" in choice and "content" in choice["message"]:
                                        response_content += choice["message"]["content"]
                
                                    if "finish_reason" in choice:
                                        finish_reason = choice["finish_reason"]
                        except json.JSONDecodeError as e:
                            logging.error(f"JSON 解析失败: {e}, 行内容: {line}")
                        except KeyError as e:
                            logging.error(f"键错误: {e}, 行内容: {line}")
                        except IndexError as e:
                            logging.error(f"索引错误: {e}, 行内容: {line}")
                
                print(f'{response_content=}')
                print(f'{prompt_tokens=}')
                print(f'{completion_tokens=}')
                
                user_content = extract_user_content(data.get("messages", []))

                user_content_replaced = user_content.replace(
                    '\n', '\\n'
                ).replace('\r', '\\n')
                response_content_replaced = response_content.replace(
                    '\n', '\\n'
                ).replace('\r', '\\n')

                logging.info(
                    f"使用的key: {api_key}, "
                    f"提示token: {prompt_tokens}, "
                    f"输出token: {completion_tokens}, "
                    f"首字用时: {first_token_time:.4f}秒, "
                    f"总共用时: {total_time:.4f}秒, "
                    f"使用的模型: {model_name}, "
                    f"用户的内容: {user_content_replaced}, "
                    f"输出的内容: {response_content_replaced}"
                )

                with data_lock:
                    request_timestamps.append(time.time())
                    token_counts.append(prompt_tokens+completion_tokens)
                    request_timestamps_day.append(time.time())
                    token_counts_day.append(prompt_tokens+completion_tokens)

            return Response(
                stream_with_context(generate()),
                content_type=response.headers['Content-Type']
            )
        else:
            response.raise_for_status()
            end_time = time.time()
            response_json = response.json()
            total_time = end_time - start_time

            try:
                prompt_tokens = response_json["usage"]["prompt_tokens"]
                completion_tokens = response_json[
                    "usage"
                ]["completion_tokens"]
                response_content = response_json[
                    "choices"
                ][0]["message"]["content"]
                response_content = response_content
            except (KeyError, ValueError, IndexError) as e:
                logging.error(
                    f"解析非流式响应 JSON 失败: {e}, "
                    f"完整内容: {response_json}"
                )
                prompt_tokens = 0
                completion_tokens = 0
                response_content = "这是公益api,模型全部可用且保真,请不要对模型进行无意义的测试,请尽量不要使用高级模型解决没必要的问题。\n"

            user_content = extract_user_content(data.get("messages", []))

            user_content_replaced = user_content.replace(
                '\n', '\\n'
            ).replace('\r', '\\n')
            response_content_replaced = response_content.replace(
                '\n', '\\n'
            ).replace('\r', '\\n')

            logging.info(
                f"使用的key: {api_key}, "
                f"提示token: {prompt_tokens}, "
                f"输出token: {completion_tokens}, "
                f"首字用时: 0, "
                f"总共用时: {total_time:.4f}秒, "
                f"使用的模型: {model_name}, "
                f"用户的内容: {user_content_replaced}, "
                f"输出的内容: {response_content_replaced}"
            )
            with data_lock:
                request_timestamps.append(time.time())
                if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
                    token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
                else:
                    token_counts.append(0)
                request_timestamps_day.append(time.time())
                if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
                    token_counts_day.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
                else:
                    token_counts_day.append(0)
            
            response_json["choices"][0]["message"]["content"] = response_content
            return jsonify(response_json)

    except requests.exceptions.RequestException as e:
        logging.error(f"请求转发异常: {e}")
        return jsonify({"error": str(e)}), 500


if __name__ == '__main__':
    logging.info(f"环境变量:{os.environ}")

    load_keys()
    logging.info("程序启动时首次加载 keys 已执行")

    scheduler.start()

    logging.info("首次加载 keys 已手动触发执行")

    refresh_models()
    logging.info("首次刷新模型列表已手动触发执行")

    app.run(debug=False,host='0.0.0.0',port=int(os.environ.get('PORT', 7860)))